A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting proc...A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting process were first plated with a coarse copper coating layer by electroless plating process.A low-temperature sintering process was then completed at about 800 °C for 1 h under the protection of hydrogen atmosphere.The results show that a novel SMFM with complex surface morphology and high specific surface area(0.2 m2/g) can be obtained in this way.The effect of sintering temperature on the surface morphology and specific surface area of SMFM was studied by means of scanning electron microscopy and Brunauer-Emmett-Teller.The damage of micro-structure during the sintering process mainly contributed to the loss of specific surface area of SMFM and the optimal sintering temperature was 800 °C.展开更多
Combining sintering additive with field assisted sintering,stereolithographical dense Si3N4 ceramics was successfully fabricated.Owing to a large amount of polymer during the stereolithography,the green parts have the...Combining sintering additive with field assisted sintering,stereolithographical dense Si3N4 ceramics was successfully fabricated.Owing to a large amount of polymer during the stereolithography,the green parts have the characteristics of low powder loading and high porosity.Adjusting the process parameters such as sintering temperature and soaking time can effectively improve the density of the specimens.The stress exponent n of all specimens is in a range of 1 and 2,which is derived from a modified sintering kinetics model.The apparent activation energy Qd of stereolithographic Si_(3)N_(4) ceramics sintered with applied pressures of 30 MPa,40 MPa,and 50 MPa is 384.75,276.61 and 193.95 kJ/mol,respectively,suggesting that the densification dynamic process is strengthened by raising applied pressure.The grain boundary slipping plays a dominating role in the densification of stereolithographic Si3N4 ceramics.The Vickers hardness and fracture toughness of stereolithographic Si3N4 ceramics are HV10/10(1347.9±2.4)and(6.57±0.07)MPaAbstract:Combining sintering additive with field assisted sintering,stereolithographical dense Si3N4 ceramics was successfully fabricated.Owing to a large amount of polymer during the stereolithography,the green parts have the characteristics of low powder loading and high porosity.Adjusting the process parameters such as sintering temperature and soaking time can effectively improve the density of the specimens.The stress exponent n of all specimens is in a range of 1 and 2,which is derived from a modified sintering kinetics model.The apparent activation energy Qd of stereolithographic Si3N4 ceramics sintered with applied pressures of 30 MPa,40 MPa,and 50 MPa is 384.75,276.61 and 193.95 kJ/mol,respectively,suggesting that the densification dynamic process is strengthened by raising applied pressure.The grain boundary slipping plays a dominating role in the densification of stereolithographic Si3N4 ceramics.The Vickers hardness and fracture toughness of stereolithographic Si3N4 ceramics are HV10/10(1347.9±2.4)and(6.57±0.07)MPa·m^(1/2),respectively.展开更多
The objectives of this work are to study the primary chemical structure of soot aerosol derived from lump-coal combustion in different experimental conditions in fixed bed. A laboratory-scale movable fixed bed, water-...The objectives of this work are to study the primary chemical structure of soot aerosol derived from lump-coal combustion in different experimental conditions in fixed bed. A laboratory-scale movable fixed bed, water-cooled soot aerosol collection system, and electric reactor have been designed and used in the process. Three kinds of coals, sized at 3-5 ram, have been heated in the experiments. Fourier Transform Infrared Spectroscopy (FTlR) has been employed to test functional groups of soot aerosol samples. Infrared spectra from 400 to 4000 cm^ -1 and semiquantitative analysis have been employed. The results of experiments show that contents of hydrogen-bonded are increased, contents of unsaturated hydrocarbons are increased, and contents of aromatic hydrocarbons are decreased with temperature increase; contents of hydrogen-bonded and unsaturated hydrocarbons are increased first and decreased late, and contents of aromatic hydrocarbons are decreased with gases residence time extension; the contents of hydrogen bonded and unsaturated hydrocarbons derived from soot aerosol samples are higher than those from original coal samples in lower-volatile coals, and the contents of aromatic hydrocarbons derived from soot aerosol samples are lower than those from original coals; and contents of hydrogen-bonded are decreased, contents of unsaturated hydrocarbons are increased, and contents of aromatic hydrocarbons are decreased with a increase.展开更多
Forest management practices such as prescribed burning and thinning in forest ecosystems may alter the properties of soil organic matter (SOM). In this study, surface softs from field plots in the Bankhead National ...Forest management practices such as prescribed burning and thinning in forest ecosystems may alter the properties of soil organic matter (SOM). In this study, surface softs from field plots in the Bankhead National Forest, Alabama, USA, were used to investigate possible SOM transformations induced by thinning and burning. Elemental analysis and solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize SOM fractions in whole soils, humic substances, and density fractions. Our data revealed that the changes in SOM fractions due to the repeated burning carried out in the forest ecosystem studied were involved mainly with alkyl C, O-alkyl C, and carbohydrate functional groups, implying that most prominent reactions that occurred involved dehydrogenation, de-oxygenation, and decarboxylation. In addition, burning and thinning might have also affected the distribution and composition of free and occluded particulate SOM fractions. The limited structural changes in SOM fractions suggested that low-intensity prescribed fire in the forest ecosystem studied will not create major structural changes in SOM fractions.展开更多
基金Project (50930005) supported by the National Natural Science Foundation of ChinaProject (U0834002) supported by the Key Programof NSFC-Guangdong Joint Funds of China+1 种基金Project (LYM09024) supported by Training Program for Excellent Young Teachers withInnovation of Guangdong University, ChinaProject (2009ZM0121) supported by the Fundamental Research Funds for the CentralUniversities of South China University of Technology,China
文摘A procedure of low temperature solid-phase sintering(LTSS) was carried out to fabricate sintered metal fibrous media(SMFM) with high specific surface area.Stainless steel fibers which were produced by cutting process were first plated with a coarse copper coating layer by electroless plating process.A low-temperature sintering process was then completed at about 800 °C for 1 h under the protection of hydrogen atmosphere.The results show that a novel SMFM with complex surface morphology and high specific surface area(0.2 m2/g) can be obtained in this way.The effect of sintering temperature on the surface morphology and specific surface area of SMFM was studied by means of scanning electron microscopy and Brunauer-Emmett-Teller.The damage of micro-structure during the sintering process mainly contributed to the loss of specific surface area of SMFM and the optimal sintering temperature was 800 °C.
基金Project(20170410221235842)supported by Shenzhen Technical Innovation and Tackling Program,ChinaProject(2019zzts859)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20203BBE53053)supported by Key R&D Project of Jiangxi Provincial Department of Science and Technology,China。
文摘Combining sintering additive with field assisted sintering,stereolithographical dense Si3N4 ceramics was successfully fabricated.Owing to a large amount of polymer during the stereolithography,the green parts have the characteristics of low powder loading and high porosity.Adjusting the process parameters such as sintering temperature and soaking time can effectively improve the density of the specimens.The stress exponent n of all specimens is in a range of 1 and 2,which is derived from a modified sintering kinetics model.The apparent activation energy Qd of stereolithographic Si_(3)N_(4) ceramics sintered with applied pressures of 30 MPa,40 MPa,and 50 MPa is 384.75,276.61 and 193.95 kJ/mol,respectively,suggesting that the densification dynamic process is strengthened by raising applied pressure.The grain boundary slipping plays a dominating role in the densification of stereolithographic Si3N4 ceramics.The Vickers hardness and fracture toughness of stereolithographic Si3N4 ceramics are HV10/10(1347.9±2.4)and(6.57±0.07)MPaAbstract:Combining sintering additive with field assisted sintering,stereolithographical dense Si3N4 ceramics was successfully fabricated.Owing to a large amount of polymer during the stereolithography,the green parts have the characteristics of low powder loading and high porosity.Adjusting the process parameters such as sintering temperature and soaking time can effectively improve the density of the specimens.The stress exponent n of all specimens is in a range of 1 and 2,which is derived from a modified sintering kinetics model.The apparent activation energy Qd of stereolithographic Si3N4 ceramics sintered with applied pressures of 30 MPa,40 MPa,and 50 MPa is 384.75,276.61 and 193.95 kJ/mol,respectively,suggesting that the densification dynamic process is strengthened by raising applied pressure.The grain boundary slipping plays a dominating role in the densification of stereolithographic Si3N4 ceramics.The Vickers hardness and fracture toughness of stereolithographic Si3N4 ceramics are HV10/10(1347.9±2.4)and(6.57±0.07)MPa·m^(1/2),respectively.
文摘The objectives of this work are to study the primary chemical structure of soot aerosol derived from lump-coal combustion in different experimental conditions in fixed bed. A laboratory-scale movable fixed bed, water-cooled soot aerosol collection system, and electric reactor have been designed and used in the process. Three kinds of coals, sized at 3-5 ram, have been heated in the experiments. Fourier Transform Infrared Spectroscopy (FTlR) has been employed to test functional groups of soot aerosol samples. Infrared spectra from 400 to 4000 cm^ -1 and semiquantitative analysis have been employed. The results of experiments show that contents of hydrogen-bonded are increased, contents of unsaturated hydrocarbons are increased, and contents of aromatic hydrocarbons are decreased with temperature increase; contents of hydrogen-bonded and unsaturated hydrocarbons are increased first and decreased late, and contents of aromatic hydrocarbons are decreased with gases residence time extension; the contents of hydrogen bonded and unsaturated hydrocarbons derived from soot aerosol samples are higher than those from original coal samples in lower-volatile coals, and the contents of aromatic hydrocarbons derived from soot aerosol samples are lower than those from original coals; and contents of hydrogen-bonded are decreased, contents of unsaturated hydrocarbons are increased, and contents of aromatic hydrocarbons are decreased with a increase.
基金supported by the USDA National Institute of Food and Agriculture(NIFA),Evans Allen Grant,USA(No.224120)the National Science Foundation(NSF-CREST-CFEA),USA(No.1036600)the Agricultural Experimental Station,Alabama A&M University,Alabama,USA(Journal#:660)
文摘Forest management practices such as prescribed burning and thinning in forest ecosystems may alter the properties of soil organic matter (SOM). In this study, surface softs from field plots in the Bankhead National Forest, Alabama, USA, were used to investigate possible SOM transformations induced by thinning and burning. Elemental analysis and solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize SOM fractions in whole soils, humic substances, and density fractions. Our data revealed that the changes in SOM fractions due to the repeated burning carried out in the forest ecosystem studied were involved mainly with alkyl C, O-alkyl C, and carbohydrate functional groups, implying that most prominent reactions that occurred involved dehydrogenation, de-oxygenation, and decarboxylation. In addition, burning and thinning might have also affected the distribution and composition of free and occluded particulate SOM fractions. The limited structural changes in SOM fractions suggested that low-intensity prescribed fire in the forest ecosystem studied will not create major structural changes in SOM fractions.