Roasting experiments were carried out with pure reagents as raw materials.The self-sintering behaviors of molybdenite(MoS_(2))during oxidation were investigated by thermodynamic calculation,XRD,SEM-EDS and high-temper...Roasting experiments were carried out with pure reagents as raw materials.The self-sintering behaviors of molybdenite(MoS_(2))during oxidation were investigated by thermodynamic calculation,XRD,SEM-EDS and high-temperature in situ analysis.The results indicate that the desulfurization efficiency of MoS_(2) pellet decreases with the increase of roasting temperature from 600 to 700℃,owing to the expansion of sintered area.At the very beginning of roasting,sintered layer can be rapidly formed and cover the pellet surface on the windward side,and meanwhile,MoO_(2)and Mo_(4)O_(11) intensively appear and constitute the sintered layer together with MoO_(3).Moreover,it is proven that MoO_(3)-rich products containing low-valence molybdenum oxides have low melting points,thus easy to be melted during the occurrence of exothermic reaction between MoS_(2) and O_(2),which leads to the sintering of materials.展开更多
基金financially supported by the Basic Science Center Program of the National Natural Science Foundation of China(No.72088101)the General Program of the National Natural Science Foundation of China(No.51874355)the Special Funding of China Postdoctoral Science Foundation(No.2020T130730)。
文摘Roasting experiments were carried out with pure reagents as raw materials.The self-sintering behaviors of molybdenite(MoS_(2))during oxidation were investigated by thermodynamic calculation,XRD,SEM-EDS and high-temperature in situ analysis.The results indicate that the desulfurization efficiency of MoS_(2) pellet decreases with the increase of roasting temperature from 600 to 700℃,owing to the expansion of sintered area.At the very beginning of roasting,sintered layer can be rapidly formed and cover the pellet surface on the windward side,and meanwhile,MoO_(2)and Mo_(4)O_(11) intensively appear and constitute the sintered layer together with MoO_(3).Moreover,it is proven that MoO_(3)-rich products containing low-valence molybdenum oxides have low melting points,thus easy to be melted during the occurrence of exothermic reaction between MoS_(2) and O_(2),which leads to the sintering of materials.