In this work, the effect of various effective dimensionless numbers and moisture contents on initiation of instability in combustion of moisty organic dust is calculated. To have reliable model, effect of thermal radi...In this work, the effect of various effective dimensionless numbers and moisture contents on initiation of instability in combustion of moisty organic dust is calculated. To have reliable model, effect of thermal radiation is taken into account. One- dimensional flame structure is divided into three zones: preheat zone, reaction zone and post-flame zone. To investigate pulsating characteristics of flame, governing equations are rewritten in dimensionless space-time ((, r/, ~) coordinates. By solving these newly achieved governing equations and combining them, which is completely discussed in body of article, a new expression is obtained. By solving this equation, it is possible to predict initiation of instability in organic dust flame. According to the obtained results by increasing Lewis number, threshold of instability happens sooner. On the other hand, pulsating is postponed by increasing Damk6hler number, pyrolysis temperature or moisture content. Also, by considering thermal radiation effect, burning velocity predicted by our model is closer to experimental results.展开更多
Spray combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering. In recent years, large-eddy simulation (LES) becomes more and mo...Spray combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering. In recent years, large-eddy simulation (LES) becomes more and more attractive, because it can give the instantaneous flow and flame structures, and may give more accurate statistical results than the Reynolds averaged Navier-Stokes (RANS) modeling. In this paper, the present status of the studies on LES of spray combustion is reviewed, and the future research needs are discussed.展开更多
文摘In this work, the effect of various effective dimensionless numbers and moisture contents on initiation of instability in combustion of moisty organic dust is calculated. To have reliable model, effect of thermal radiation is taken into account. One- dimensional flame structure is divided into three zones: preheat zone, reaction zone and post-flame zone. To investigate pulsating characteristics of flame, governing equations are rewritten in dimensionless space-time ((, r/, ~) coordinates. By solving these newly achieved governing equations and combining them, which is completely discussed in body of article, a new expression is obtained. By solving this equation, it is possible to predict initiation of instability in organic dust flame. According to the obtained results by increasing Lewis number, threshold of instability happens sooner. On the other hand, pulsating is postponed by increasing Damk6hler number, pyrolysis temperature or moisture content. Also, by considering thermal radiation effect, burning velocity predicted by our model is closer to experimental results.
基金Supported by the National Natural Science Foundation of China (50606026, 50736006)the Foundation of State Key Laboratory of Engines, Tianjin University (K-2010-07)
文摘Spray combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering. In recent years, large-eddy simulation (LES) becomes more and more attractive, because it can give the instantaneous flow and flame structures, and may give more accurate statistical results than the Reynolds averaged Navier-Stokes (RANS) modeling. In this paper, the present status of the studies on LES of spray combustion is reviewed, and the future research needs are discussed.