The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip...The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.展开更多
The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functiona...The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functional theory. The obtained equation of state is consistent with the available experimental data. The heat capacity and the thermal expansion coefficient agree with the observed values and other calculations at high pressures and temperatures. The elastic constants are calculated using the finite strain method. A complete elastic tensor of MgSiO3 perovskite is determined in the wide pressure range. The geologically important quantities: Young's modulus, Poisson's ratio, Debye temperature, and crystal anisotropy, are derived from the calculated data.展开更多
A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm....A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.展开更多
The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with tempera...The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with temperature distribution were experimentally studied. Particle dynamics analyzer (PDA) was used for the on-line measurement of particle motion and particle concentration distribution in the cross-sections of the duct. The influences of the parameters such as the ratio of the bulk air temperature to the cold wall temperature and the air flow rate in the duct on the kinematical characteristics and the deposition efficiencies of PM2.5 were investigated. The experimental re- sults show that the deposition efficiencies of PM2.5 mainly depend on the temperature difference between the air and the cold wail, wffile the air flow rate and the particlecon^centration almost affect hardly tile clep0si-tion-effi ciency. The radial force thermophoresis to push PM2.5 to the cold wail is found the key factor for PM2.5 deposition.Based on the experimental results, an empirical modified Romay correlation for the calculation of thermophoretic deposition efficiency of PM2.5 is presenlext. The empirical correlation agrees reasonably well with the experimental data.展开更多
Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properti...Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.展开更多
In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed ...In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed by furnace-cooling(H2),stabilization(T5)and quench−aging(T6 and T7)were applied.The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and,mechanical and wear tests in comparison with SAE 65 bronze.The wear tests were performed using a block on cylinder type test apparatus.The hardness,tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments,and all the heat treatments except T6,increase its elongation to fracture.H1,T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy.However,this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment.Therefore,T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa.However,Zn−40Al−2Cu−2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.展开更多
The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room t...The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.展开更多
We have investigated the structural and elastic properties of MgB2 under high pressures using the full- potential linearized muffin-tin orbital (FP-LMTO) scheme within the generalized gradient approximation correcti...We have investigated the structural and elastic properties of MgB2 under high pressures using the full- potential linearized muffin-tin orbital (FP-LMTO) scheme within the generalized gradient approximation correction (GGA) in the frame of density functional theory. The calculated pressure dependence of the normalized volume is in excellent agreement with the experimental results. At the same time the elastic constants and acoustic anisotropy as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also investigate the thermodynamic properties of MgB2.展开更多
Nitroguanidine(NQ) isa high energy and low sensitivity explosive and solid-liquid equilibrium data are significant for study on crystallization of NQ. The solubilities of NQ in water, dimethyl sulfoxide, N, N dimeth...Nitroguanidine(NQ) isa high energy and low sensitivity explosive and solid-liquid equilibrium data are significant for study on crystallization of NQ. The solubilities of NQ in water, dimethyl sulfoxide, N, N dimethylformamide, 1,4 butyrolaetone and dimethyl sulfoxide @ water, N, N dimethylformamide + water were measured by dynamic laser monitoring within a temperature range from 298. 15 K to 338. 15 K. The experimental data were correlated by modified Apelblat equation, 2h equation, CNIBS/R K model, andJouyban-Acree model. The results show that the four thermodynamic models can all be used to predict solubility with high accuracy. Accrding to the Akaike's information criterion (AIC), the better models for correlating the solubility of NQ are judged. Additionally, the dissolution enthalpy, entropy and Gibbs free energy were calculated by the van't Hoff equation.展开更多
Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30...Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.展开更多
The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of ...The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120-155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.展开更多
The recent thermodynamical interpretation of the field equations of gravity is revisited and extended to the killing horizons linked to the rotation (Kerr black holes). An entropic force can be defined also for thes...The recent thermodynamical interpretation of the field equations of gravity is revisited and extended to the killing horizons linked to the rotation (Kerr black holes). An entropic force can be defined also for these horizons which are not event horizons but show thermodynamical features that in previous works were used to explain the rotational properties of Kerr solutions. Such entropic force is needed to describe the energetic processes, which do not change the usual thermal entropy of the rotating black hole (reversible transformations, superradiance).展开更多
Based on consideration of both thermodynamic and kinetic features of the subtropical summer monsoon in East Asia,a new index is defined by the moist potential vorticity (MPV) for this monsoon.Variation features of the...Based on consideration of both thermodynamic and kinetic features of the subtropical summer monsoon in East Asia,a new index is defined by the moist potential vorticity (MPV) for this monsoon.Variation features of the subtropical summer monsoon over 60 years are analyzed using National Centers for Environmental Prediction/National Center for Atmospheric Research (USA) data from 1948 to 2007.Results show that the new index can well reflect the seasonal,interannual,and interdecadal variations of the East Asian subtropical summer monsoon.Correlation analysis of the new index and precipitation data from 160 stations in China shows that in high-index years,the summer monsoon is strong,and more rain falls in eastern North China,southwestern China,and along the coast of South China and less rain falls in the Yangtze-Huaihe R.basin.In low-index years,the opposite occurs.Lastly,the new index is compared with four established monsoon indices.The new index is found to have an advantage in representing summer rainfall in the Yangtze-Huaihe R.basin.展开更多
We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient a2 〈 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1...We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient a2 〈 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1, the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k = 1, we found that the black hole has an intermediate unstable phase for D = 7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient a is under a critical value. For D ≥ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient & is under a critical value for D = 8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with fiat horizon do not depend on the Loveloek coefficients and are the same as those of black holes in general gravity.展开更多
To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteris...To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteristic of mass loss and gas products generated during pyrolysis of the sludge with ZnCl2 activation were analyzed by thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy (TG-FTIR).The kinetic parameters were calculated by the Coats-Redfem method and the mechanism models were established.The role of ZnCl2 in the pyrolysis process of the sludge with ZnCl2 activation was also illustrated through the comparison of the pyrolysis characteristics and kinetics of the sludge with and without ZnCl2 activation.The results showed that the pyrolysis process of the sludge with ZnCl2 activation can be divided into four stages including the dehydration of sludge and initial depolymerization of a small portion of organics matters,the decomposition of large molecular organic matters into small molecular intermediates,the further degradation of intermediates and volatilization of ZnCl2,and the decomposition of inorganic minerals and undecomposed organic matters.CO2,CO,CH4,H2O,some aldehydes and carboxylic acids are the major pyrolysis gaseous products.The activation energies and pre-exponential factors are in the range of 28.84-206.42 kJ/mol and 9885.16-8.08× 1011 min-1,respectively.During the pyrolysis of sludge,ZnC12 not only can function as a dehydration agent and inhibit the formation of tar,but also can peptize the organic matters in the sludge,making them easier to be decomposed.展开更多
The atmospheric boundary layer (ABL) is an important physical characteristic of the Earth's atmosphere. Compared with the typical ABL, the ABL in arid regions has distinct features and is formed by particular mecha...The atmospheric boundary layer (ABL) is an important physical characteristic of the Earth's atmosphere. Compared with the typical ABL, the ABL in arid regions has distinct features and is formed by particular mechanisms. In this paper, the depth of the diurnal and nocturnal ABLs and their related thermodynamic features of land surface processes, including net radiation, the ground-air temperature difference and sensible heat flux, under typical summer and winter conditions are discussed on the basis of comprehensive observations of the ABL and thermodynamic processes at the land surface carried out in the extreme arid zone of Dunhuang. The relationships of the ABL depth in the development and maintenance stages with these thermodynamic features are also investigated. The results show that the depth of the ABL is closely correlated with the thermodynamic features in both development and maintenance stages and more energy is consumed in the development stage. Further analysis indicates that wind velocity also affects ABL development, especially the development of a stable boundary layer in winter. Taken together, the analysis results indicate that extremely strong thermodynamic processes at the land surface are the main driving factor for the formation of a deep ABL in an arid region.展开更多
The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the e...The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the experiments and other theoretical results.The thermal conductivity and coefficient of thermal expansion of Mg2 Pb at high pressure were evaluated.The thermal conductivity presents a second-order polynomial with pressure.The calculated thermal conductivity of Mg2Pb indicates that it is suitable to be used as thermal conductor at 0 K.展开更多
Systematic thermodynamic analysis reveals that an essential condition for the thermodynamically valid chemographic projec-tions proposed by Greenwood is completely excessive.In other words,the phases or components fro...Systematic thermodynamic analysis reveals that an essential condition for the thermodynamically valid chemographic projec-tions proposed by Greenwood is completely excessive.In other words,the phases or components from which the projection is made need not be pure,nor have their chemical potentials fixed over the whole chemographic diagram.To facilitate the analy-sis of phase assemblages in multicomponent systems,all phases and components in the system are divided into internal and external ones in terms of their thermodynamic features and roles,where the external phases are those common to all assem-blages in the system,and the external components include excess components and the components whose chemical potentials(or relevant intensive properties of components) are used to define the thermodynamic conditions of the system.This general classification overcomes the difficulties and defects in the previous classifications,and is easier to use than the previous ones.According to the above classification,the phase rule is transformed into a new form.This leads to two findings:(1) the degree of freedom of the system under the given conditions is only determined by the internal components and phases;(2) different external phases can be identified conveniently according to the conditions of the system before knowing the real phase rela-tions.Based on the above results,a simple but general approach is proposed for the treatment of phases and components:all external phases and components can be eliminated from the system without affecting the phase relations,where the external components can be eliminated by appropriate chemographic projections.The projections have no restriction on the states of the phases or the chemical potentials of components from which the projections are made.The present work can give a unified ex-planation of the previous treatments of phases and components in the analysis of phase assemblages under various specific conditions.It helps to avoid potential misunderstandings or errors in the topological analysis of phase relations.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12272217)。
文摘The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.
基金This work was supported by the National Natural Science Foundation of China (No.11064007 and No.11164013), the Natural Science Foundation of Gansu Province of China (No.1014RJZA046), the Program for New Century Excellent Talents in University, and the Key Project of Chinese Ministry of Education (No.209127).
文摘The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functional theory. The obtained equation of state is consistent with the available experimental data. The heat capacity and the thermal expansion coefficient agree with the observed values and other calculations at high pressures and temperatures. The elastic constants are calculated using the finite strain method. A complete elastic tensor of MgSiO3 perovskite is determined in the wide pressure range. The geologically important quantities: Young's modulus, Poisson's ratio, Debye temperature, and crystal anisotropy, are derived from the calculated data.
基金Supported by the Shanxi Science and Technology Agency Research Project(20100321085)the Scientific Research Foun-dation of the Shanxi Education Department(20111029)
文摘A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.
基金the Special Funds for Major State Basic Research Project of China (2002CB211604)
文摘The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with temperature distribution were experimentally studied. Particle dynamics analyzer (PDA) was used for the on-line measurement of particle motion and particle concentration distribution in the cross-sections of the duct. The influences of the parameters such as the ratio of the bulk air temperature to the cold wall temperature and the air flow rate in the duct on the kinematical characteristics and the deposition efficiencies of PM2.5 were investigated. The experimental re- sults show that the deposition efficiencies of PM2.5 mainly depend on the temperature difference between the air and the cold wail, wffile the air flow rate and the particlecon^centration almost affect hardly tile clep0si-tion-effi ciency. The radial force thermophoresis to push PM2.5 to the cold wail is found the key factor for PM2.5 deposition.Based on the experimental results, an empirical modified Romay correlation for the calculation of thermophoretic deposition efficiency of PM2.5 is presenlext. The empirical correlation agrees reasonably well with the experimental data.
文摘Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.
基金This work was supported by Scientific Research Projects Coordination Unit of Karadeniz Technical University,Turkey(No.2008.112.03.1).
文摘In order to determine the effect of heat treatment on the mechanical and wear properties of Zn−40Al−2Cu−2Si alloy,different heat treatments including homogenization followed by air-cooling(H1),homogenization followed by furnace-cooling(H2),stabilization(T5)and quench−aging(T6 and T7)were applied.The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and,mechanical and wear tests in comparison with SAE 65 bronze.The wear tests were performed using a block on cylinder type test apparatus.The hardness,tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments,and all the heat treatments except T6,increase its elongation to fracture.H1,T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy.However,this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment.Therefore,T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa.However,Zn−40Al−2Cu−2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.
基金the financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(No.CSTC,2014 JCYAA 50021)
文摘The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiplelinear regression method. The activation energy, the preexponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.
基金The project supported by National Natural Science Foundation of China under Grant No. 60436010 and the Scientific Research Foundation for Returned 0verseas Chinese Scholars of the Ministry of Education under Grant No. 2004176-6-4
文摘We have investigated the structural and elastic properties of MgB2 under high pressures using the full- potential linearized muffin-tin orbital (FP-LMTO) scheme within the generalized gradient approximation correction (GGA) in the frame of density functional theory. The calculated pressure dependence of the normalized volume is in excellent agreement with the experimental results. At the same time the elastic constants and acoustic anisotropy as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also investigate the thermodynamic properties of MgB2.
文摘Nitroguanidine(NQ) isa high energy and low sensitivity explosive and solid-liquid equilibrium data are significant for study on crystallization of NQ. The solubilities of NQ in water, dimethyl sulfoxide, N, N dimethylformamide, 1,4 butyrolaetone and dimethyl sulfoxide @ water, N, N dimethylformamide + water were measured by dynamic laser monitoring within a temperature range from 298. 15 K to 338. 15 K. The experimental data were correlated by modified Apelblat equation, 2h equation, CNIBS/R K model, andJouyban-Acree model. The results show that the four thermodynamic models can all be used to predict solubility with high accuracy. Accrding to the Akaike's information criterion (AIC), the better models for correlating the solubility of NQ are judged. Additionally, the dissolution enthalpy, entropy and Gibbs free energy were calculated by the van't Hoff equation.
基金Project(50378062) supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100) supported by the Natural Science Foundation of Tianjin City,China
文摘Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.
基金Supported by the National Natural Science Foundation of China (No. 21076117)Shandong Province Higher Educational Science and Technology Program (Nos. J09LC22 and J10LC15)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-209)the Open Fund of the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences (No. Kf201016)
文摘The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120-155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.
文摘The recent thermodynamical interpretation of the field equations of gravity is revisited and extended to the killing horizons linked to the rotation (Kerr black holes). An entropic force can be defined also for these horizons which are not event horizons but show thermodynamical features that in previous works were used to explain the rotational properties of Kerr solutions. Such entropic force is needed to describe the energetic processes, which do not change the usual thermal entropy of the rotating black hole (reversible transformations, superradiance).
基金Chinese Universities Scientific fund and National Natural Science Foundation of China (40505008)
文摘Based on consideration of both thermodynamic and kinetic features of the subtropical summer monsoon in East Asia,a new index is defined by the moist potential vorticity (MPV) for this monsoon.Variation features of the subtropical summer monsoon over 60 years are analyzed using National Centers for Environmental Prediction/National Center for Atmospheric Research (USA) data from 1948 to 2007.Results show that the new index can well reflect the seasonal,interannual,and interdecadal variations of the East Asian subtropical summer monsoon.Correlation analysis of the new index and precipitation data from 160 stations in China shows that in high-index years,the summer monsoon is strong,and more rain falls in eastern North China,southwestern China,and along the coast of South China and less rain falls in the Yangtze-Huaihe R.basin.In low-index years,the opposite occurs.Lastly,the new index is compared with four established monsoon indices.The new index is found to have an advantage in representing summer rainfall in the Yangtze-Huaihe R.basin.
文摘We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient a2 〈 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1, the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k = 1, we found that the black hole has an intermediate unstable phase for D = 7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient a is under a critical value. For D ≥ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient & is under a critical value for D = 8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with fiat horizon do not depend on the Loveloek coefficients and are the same as those of black holes in general gravity.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008106)
文摘To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteristic of mass loss and gas products generated during pyrolysis of the sludge with ZnCl2 activation were analyzed by thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy (TG-FTIR).The kinetic parameters were calculated by the Coats-Redfem method and the mechanism models were established.The role of ZnCl2 in the pyrolysis process of the sludge with ZnCl2 activation was also illustrated through the comparison of the pyrolysis characteristics and kinetics of the sludge with and without ZnCl2 activation.The results showed that the pyrolysis process of the sludge with ZnCl2 activation can be divided into four stages including the dehydration of sludge and initial depolymerization of a small portion of organics matters,the decomposition of large molecular organic matters into small molecular intermediates,the further degradation of intermediates and volatilization of ZnCl2,and the decomposition of inorganic minerals and undecomposed organic matters.CO2,CO,CH4,H2O,some aldehydes and carboxylic acids are the major pyrolysis gaseous products.The activation energies and pre-exponential factors are in the range of 28.84-206.42 kJ/mol and 9885.16-8.08× 1011 min-1,respectively.During the pyrolysis of sludge,ZnC12 not only can function as a dehydration agent and inhibit the formation of tar,but also can peptize the organic matters in the sludge,making them easier to be decomposed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40830957, 40805009)
文摘The atmospheric boundary layer (ABL) is an important physical characteristic of the Earth's atmosphere. Compared with the typical ABL, the ABL in arid regions has distinct features and is formed by particular mechanisms. In this paper, the depth of the diurnal and nocturnal ABLs and their related thermodynamic features of land surface processes, including net radiation, the ground-air temperature difference and sensible heat flux, under typical summer and winter conditions are discussed on the basis of comprehensive observations of the ABL and thermodynamic processes at the land surface carried out in the extreme arid zone of Dunhuang. The relationships of the ABL depth in the development and maintenance stages with these thermodynamic features are also investigated. The results show that the depth of the ABL is closely correlated with the thermodynamic features in both development and maintenance stages and more energy is consumed in the development stage. Further analysis indicates that wind velocity also affects ABL development, especially the development of a stable boundary layer in winter. Taken together, the analysis results indicate that extremely strong thermodynamic processes at the land surface are the main driving factor for the formation of a deep ABL in an arid region.
基金supported by the National Natural Science Foundation of China(Grant No.51201079)the Scientific Research Foundation for Introduced Talents of KMUST(Grant No.KKSY201251033)the Scientific Research Fund of Department of Education of Yunnan Province(Grant No.2012Z099)
文摘The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the experiments and other theoretical results.The thermal conductivity and coefficient of thermal expansion of Mg2 Pb at high pressure were evaluated.The thermal conductivity presents a second-order polynomial with pressure.The calculated thermal conductivity of Mg2Pb indicates that it is suitable to be used as thermal conductor at 0 K.
基金supported by National Natural Science Founda-tion of China (Grant No.40873018)Open Foundation of the State Key La-boratory of Ore Deposit Geochemistry,Guiyang Institute of Geochemistry,Chinese Academy of Sciences (Grant No.200807)+1 种基金the Open Fund (Grant No.PLC201001) of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the Natural Science Foundation of Hebei Province (Grant No.D2008000535)
文摘Systematic thermodynamic analysis reveals that an essential condition for the thermodynamically valid chemographic projec-tions proposed by Greenwood is completely excessive.In other words,the phases or components from which the projection is made need not be pure,nor have their chemical potentials fixed over the whole chemographic diagram.To facilitate the analy-sis of phase assemblages in multicomponent systems,all phases and components in the system are divided into internal and external ones in terms of their thermodynamic features and roles,where the external phases are those common to all assem-blages in the system,and the external components include excess components and the components whose chemical potentials(or relevant intensive properties of components) are used to define the thermodynamic conditions of the system.This general classification overcomes the difficulties and defects in the previous classifications,and is easier to use than the previous ones.According to the above classification,the phase rule is transformed into a new form.This leads to two findings:(1) the degree of freedom of the system under the given conditions is only determined by the internal components and phases;(2) different external phases can be identified conveniently according to the conditions of the system before knowing the real phase rela-tions.Based on the above results,a simple but general approach is proposed for the treatment of phases and components:all external phases and components can be eliminated from the system without affecting the phase relations,where the external components can be eliminated by appropriate chemographic projections.The projections have no restriction on the states of the phases or the chemical potentials of components from which the projections are made.The present work can give a unified ex-planation of the previous treatments of phases and components in the analysis of phase assemblages under various specific conditions.It helps to avoid potential misunderstandings or errors in the topological analysis of phase relations.