The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the m...The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.展开更多
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re...Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).展开更多
We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe...We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe that variation of this parameter reduces the simulation to experiment discrepancy in several experimentally inferred quantities. Simulations are continued from capsule only l D simulations using the Lawrence Livermore National Laboratory ICF code, HYDRA. The continuations employ the high energy density physics (HEDP) University of Chicago code, FLASH, and a hydro only code, FronTier, modified with a radiation equation of state (EOS) model. Hot spot densities, burn-weighted ion temperatures and pressures show a decreasing trend, while the hot spot radius shows an increasing trend in response to added heat to the cold shell. Instantaneous quantities are assessed at the time of maximum neutron production within each simulation.展开更多
A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capac...A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capacity and COP (coefficient of performance) of the HPWH unit under different EXV openings were measured. The effects of the EXV opening on the performance of the HPWH unit were analyzed. Meanwhile, the dynamic performance of the HPWH with EXV was simulated and the results were compared with the experimental one. The experimental results indicate that during heating process, the COP increases firstly and then decreases for a fixed EXV opening, which is in good agreement with the numerical result. For different EXV openings, the COP and heating capacity of the system using larger EXV opening are superior to those using the smaller one in the initial heating stage. While in the late stage, the performance of system using smaller EXV opening is better. It is found that the system performance is improved significantly by changing the EXV opening in the different heating period and the average COP of the HPWH system is increased by 7.6%.展开更多
Continuous annular chromatography(CAC) is a separation process for multicomponent liquid mixtures. The performance of the apparatus can be seriously decreased by temperature gradients inside the adsorbent bed. It is s...Continuous annular chromatography(CAC) is a separation process for multicomponent liquid mixtures. The performance of the apparatus can be seriously decreased by temperature gradients inside the adsorbent bed. It is shown, that the temperature gradients can be significantly reduced by a pre-heating of the entering liquid in the apparatus itself. Heat transfer and hydrodynamics in the porous media are described by two different modelling approaches. Both are based on a pseudo-homogeneous model for heat transfer with temperature dependent fluid viscosities. The first model considers one-dimensional fluid now and two-dimensional heat transfer. The second, more rigorous one is a three-dimensional model for heat transfer and hydrodynamics. The simulation results obtained with both models are in good agreement with experimental results. The experiments have been performed with glass beads as the stationary phase and water as the liquid phase under different boundary conditions. The temparature profiles inside the packed bed have been measured with thermocouples.展开更多
基金Supported by the National Natural Science Foundation of China (No.40172047) and National Major Fundamental Research & Development Project(No.G19990433)
文摘The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.
基金Project(101048) supported by Fok Ying Tung Education FoundationProject(E2008000835) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).
文摘We determine the dependence of key inertial confinement fusion (ICF) hot spot properties on the deuterium-tritium (DT) fuel adiabat accomplished by addition of heat to the cold shell. Our main result is to observe that variation of this parameter reduces the simulation to experiment discrepancy in several experimentally inferred quantities. Simulations are continued from capsule only l D simulations using the Lawrence Livermore National Laboratory ICF code, HYDRA. The continuations employ the high energy density physics (HEDP) University of Chicago code, FLASH, and a hydro only code, FronTier, modified with a radiation equation of state (EOS) model. Hot spot densities, burn-weighted ion temperatures and pressures show a decreasing trend, while the hot spot radius shows an increasing trend in response to added heat to the cold shell. Instantaneous quantities are assessed at the time of maximum neutron production within each simulation.
文摘A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capacity and COP (coefficient of performance) of the HPWH unit under different EXV openings were measured. The effects of the EXV opening on the performance of the HPWH unit were analyzed. Meanwhile, the dynamic performance of the HPWH with EXV was simulated and the results were compared with the experimental one. The experimental results indicate that during heating process, the COP increases firstly and then decreases for a fixed EXV opening, which is in good agreement with the numerical result. For different EXV openings, the COP and heating capacity of the system using larger EXV opening are superior to those using the smaller one in the initial heating stage. While in the late stage, the performance of system using smaller EXV opening is better. It is found that the system performance is improved significantly by changing the EXV opening in the different heating period and the average COP of the HPWH system is increased by 7.6%.
文摘Continuous annular chromatography(CAC) is a separation process for multicomponent liquid mixtures. The performance of the apparatus can be seriously decreased by temperature gradients inside the adsorbent bed. It is shown, that the temperature gradients can be significantly reduced by a pre-heating of the entering liquid in the apparatus itself. Heat transfer and hydrodynamics in the porous media are described by two different modelling approaches. Both are based on a pseudo-homogeneous model for heat transfer with temperature dependent fluid viscosities. The first model considers one-dimensional fluid now and two-dimensional heat transfer. The second, more rigorous one is a three-dimensional model for heat transfer and hydrodynamics. The simulation results obtained with both models are in good agreement with experimental results. The experiments have been performed with glass beads as the stationary phase and water as the liquid phase under different boundary conditions. The temparature profiles inside the packed bed have been measured with thermocouples.