The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "a...The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.展开更多
Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base o...Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.展开更多
Fluorosilicone oil is polysiloxane with alkyl side chains containing fluorine, and because of its excellent thermal oxidation stability, cold flow property and cryogenic property, it can be widely used as a high tempe...Fluorosilicone oil is polysiloxane with alkyl side chains containing fluorine, and because of its excellent thermal oxidation stability, cold flow property and cryogenic property, it can be widely used as a high temperature lubricant in the field of military aerospace industry. Two kinds of fluorosilicone oils, FSiO-a and FSiO-b, were synthesized by different pro- cessing means. FTICR MS was used to collect the information on composition and structure of the two polymers, respec- tively. The test results show that the two fluorosilicone oils have different contents of fluorine-containing chain segments (m/ n value), the maximum distribution of m/n value of FSiO-a oil ranges from 0.22 to 0.25, and that of FSiO-b oil ranges from 0.4 to 0.67. Difference in synthesis techniques makes this discrepancy and affects the quality and thermal stability of the fluoro- silicone oils.展开更多
基金Supported by the Fund from the Air Force Armament Department of China for Innovative Research Group(Grant KJ2012283)
文摘The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.
文摘Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.
文摘Fluorosilicone oil is polysiloxane with alkyl side chains containing fluorine, and because of its excellent thermal oxidation stability, cold flow property and cryogenic property, it can be widely used as a high temperature lubricant in the field of military aerospace industry. Two kinds of fluorosilicone oils, FSiO-a and FSiO-b, were synthesized by different pro- cessing means. FTICR MS was used to collect the information on composition and structure of the two polymers, respec- tively. The test results show that the two fluorosilicone oils have different contents of fluorine-containing chain segments (m/ n value), the maximum distribution of m/n value of FSiO-a oil ranges from 0.22 to 0.25, and that of FSiO-b oil ranges from 0.4 to 0.67. Difference in synthesis techniques makes this discrepancy and affects the quality and thermal stability of the fluoro- silicone oils.