电缆在非开挖顶管敷设处排列紧密且埋深较大,大大加剧了电缆间的电磁耦合和热耦合,因此该区域往往成为限制载流量的瓶颈段,需重点关注。为准确计算110 k V忠田变—湄洲变线路中双回路电缆在顶管敷设段的载流量,建立电磁—热—流耦合场...电缆在非开挖顶管敷设处排列紧密且埋深较大,大大加剧了电缆间的电磁耦合和热耦合,因此该区域往往成为限制载流量的瓶颈段,需重点关注。为准确计算110 k V忠田变—湄洲变线路中双回路电缆在顶管敷设段的载流量,建立电磁—热—流耦合场有限元模型,将电磁场、温度场及排管内空气流速场耦合求解,得到给定负荷电流下的电磁损耗分布、管内空气流速分布和温度分布特性,并利用迭代法计算了单通道敷设方案和双通道敷设方案下的载流量。结果表明,由于回路之间的相互电磁和散热影响得到抑制,采用双通道敷设方案可提高载流量30%以上,故在路径通道允许的情况下应采用双通道敷设方案。展开更多
A hybrid rocket can be used in various applications and is an attractive propulsion system. However, serious erosion of nozzles is common in motor firing operations, which could restrict the application of hybrid rock...A hybrid rocket can be used in various applications and is an attractive propulsion system. However, serious erosion of nozzles is common in motor firing operations, which could restrict the application of hybrid rocket motors. Usually, the serious erosion is attributed to the high concentration of oxidizing species in hybrid motors, while the details of flowfields in the motors are not paid special attention to. In this paper, first the thermochemical erosion of C/C nozzle is simulated coupled with the flowfields in a 98% H2O2/hydroxyl-terminated polybutadiene(HTPB) hybrid rocket motor. The simulation is made on a typical axisymmetric motor, including a pre-combustion chamber, an aft-combustion chamber and nozzle structures. Thermochemica reactions of H2 O, CO2, OH, O and O2 with C are taken into account. Second, the change of flowfields due to fuel regression during motor firing operations is considered. Nozzle erosion in different flowfields is evaluated. Third, the results of nozzle erosion in the coupled simulation are compared with those under uniform and chemical equilibrium flow and motor firing test results. The results of simulation and firing tests indicate that the thermochemical erosion of nozzles in hybrid motors should be calculated coupled with flowfields in the motor. In uniform and chemical equilibrium flowfields, the erosion rate is overestimated. The diffusion flame in hybrid motors protects the nozzle surface from the injected oxidizer and high temperature products in flowfields, leading to a relatively fuel-rich environment above the nozzle. The influence of OH and the geometry of motor should also be considered in the evaluation of nozzle erosion in hybrid motors.展开更多
文摘电缆在非开挖顶管敷设处排列紧密且埋深较大,大大加剧了电缆间的电磁耦合和热耦合,因此该区域往往成为限制载流量的瓶颈段,需重点关注。为准确计算110 k V忠田变—湄洲变线路中双回路电缆在顶管敷设段的载流量,建立电磁—热—流耦合场有限元模型,将电磁场、温度场及排管内空气流速场耦合求解,得到给定负荷电流下的电磁损耗分布、管内空气流速分布和温度分布特性,并利用迭代法计算了单通道敷设方案和双通道敷设方案下的载流量。结果表明,由于回路之间的相互电磁和散热影响得到抑制,采用双通道敷设方案可提高载流量30%以上,故在路径通道允许的情况下应采用双通道敷设方案。
文摘A hybrid rocket can be used in various applications and is an attractive propulsion system. However, serious erosion of nozzles is common in motor firing operations, which could restrict the application of hybrid rocket motors. Usually, the serious erosion is attributed to the high concentration of oxidizing species in hybrid motors, while the details of flowfields in the motors are not paid special attention to. In this paper, first the thermochemical erosion of C/C nozzle is simulated coupled with the flowfields in a 98% H2O2/hydroxyl-terminated polybutadiene(HTPB) hybrid rocket motor. The simulation is made on a typical axisymmetric motor, including a pre-combustion chamber, an aft-combustion chamber and nozzle structures. Thermochemica reactions of H2 O, CO2, OH, O and O2 with C are taken into account. Second, the change of flowfields due to fuel regression during motor firing operations is considered. Nozzle erosion in different flowfields is evaluated. Third, the results of nozzle erosion in the coupled simulation are compared with those under uniform and chemical equilibrium flow and motor firing test results. The results of simulation and firing tests indicate that the thermochemical erosion of nozzles in hybrid motors should be calculated coupled with flowfields in the motor. In uniform and chemical equilibrium flowfields, the erosion rate is overestimated. The diffusion flame in hybrid motors protects the nozzle surface from the injected oxidizer and high temperature products in flowfields, leading to a relatively fuel-rich environment above the nozzle. The influence of OH and the geometry of motor should also be considered in the evaluation of nozzle erosion in hybrid motors.