The influences of circular-ring turbulators (CRT) and twisted tape (TT) swirl generators on the heat transfer enhancement, pressure drop and thermal performance factor characteristics in a round tube are reported....The influences of circular-ring turbulators (CRT) and twisted tape (TT) swirl generators on the heat transfer enhancement, pressure drop and thermal performance factor characteristics in a round tube are reported. The circular-ring turbulators were individually employed and together with the twisted tape swirl generators in the heated section of the tube. Three different pitch ratios (I/D = 1.0, 1.5, and 2.0) of the CRT and three different twist ratios (y/W= 3, 4, and 5) of the TT were introduced. The experiments were conducted using air as the working fluid under a uniform wall heat flux condition, for the Reynolds number between 6000 and 20000. The experimental results reveal that the heat transfer rate, friction factor and thermal performance factor of the combined CRT and qT are considerably higher than those of CRT alone. For the range examined, the Sncreases of mean Nusselt number, friction factor and thermal performance, in the tube equipped with combined devices, respectively, are 25.8%, 82.8% and 6.3% over those in the tube with the CRT alone. The highest thermal performance factor of 1.42 is found for the combined device consisting of the CRT with l/D = 1.0 and TT with y/W= 3. The correlations of the Nusselt number, friction factor and thermal performance factor of the tubes with combined devices are also developed in terms of Reynolds number, Prandtl number, twist ratio and pitch ratio.展开更多
The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat t...The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat transfer of four GHEs was carried out in 2010.Results indicate that the velocity field is disturbed by GHEs.The optimal orientation strategy of side pipe is that the upward pipe is located upstream and the downward pipe downstream.The space between GHEs should be appropriately adjusted,depending on the direction and flow velocity.Groups of GHEs should be installed perpendicular to the mainstream in a single row,but if the acreage does not meet the requirements,GHEs should be installed in staggered multiple rows.Fewer GHEs parallel to the mainstream strengthen the heat transfer.Moreover,numerical results agree well with the test data,with the maximum relative error being less than 7.7%.展开更多
This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of...This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of the pulsating airflow around the heating pillar mounted in the rectangular enclosure was investigated experimentally while changing the size of the clearance between the enclosure wall and the pillar. The pillar simulates the components mounted in thermal equipment such as fins and electrical components. The rectangular enclosure simulates an enclosure of electronic equipment and heat exchangers. The shape of the cross section of the pillar was square having sides 30 mm. The dimension of the width of the enclosure was changed from 50 mm to 80 mm. It was found that the heat transfer performance of the pulsating airflow became higher than that of the steady flow regardless of the dimension of the clearance. The heat transfer enhancement around heating components by the pulsating flow can be available regardless of the clearance around the components.展开更多
As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currentl...As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currently, thermal performance management of heat exchangers is more importantly issued for long term operation. Therefore, the performance evaluation techniques are required to improve the present method for the integrity evaluation of heat exchangers because of the exclusion of fouling calculation and the uncertainty analysis. This paper describes the developed thermal performance evaluation technique applied to the safety-related heat exchangers such as component cooling heat exchangers in a nuclear power plants.展开更多
Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergy- economic criteria which are defined as the total costs per unit heat transfer rate ηt for heat transfer exchange...Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergy- economic criteria which are defined as the total costs per unit heat transfer rate ηt for heat transfer exchanger and the net profit per unit heat recovery rate ηr for heat recovery exchanger respectively are put forward. Furthermore , the application of criteria is illustrated by the evaluation of down-flow, counter-flow and cross-flow heat exchangers performance. The methods employed and results presented in this paper can serve as a guide for the performance evaluation of heat exchangers.展开更多
The experimental study and analysis of a novel multi-media plate heat exchanger were performed in this paper.This novel multi-media plate heat exchanger was self-developed during the process of the investigation and d...The experimental study and analysis of a novel multi-media plate heat exchanger were performed in this paper.This novel multi-media plate heat exchanger was self-developed during the process of the investigation and design of the alpha magnetic spectrometer(AMS) thermal system.The plate of this kind of novel plate heat exchanger is formed by discontinuous structure wave consisting of convex sphere and concave sphere,its heat transfer performance is better than that of the BR1 chevron plate heat exchanger,and its resistance characteristics are superior to those of the normally used 60-degree plate heat exchanger.Furthermore,the mechanism analysis of heat transfer enhancement shows that the spherical wave structure can reduce the local field synergy angle,so as to improve the field synergy degree of velocity vector and temperature gradient vector.展开更多
Analogizing with the definition of thermal efficiency of a heat exchanger,the entransy dissipation efficiency of a heat exchanger is defined as the ratio of dimensionless entransy dissipation rate to dimensionless pum...Analogizing with the definition of thermal efficiency of a heat exchanger,the entransy dissipation efficiency of a heat exchanger is defined as the ratio of dimensionless entransy dissipation rate to dimensionless pumping power of the heat exchanger.For the constraints of the total tube volume and total tube surface area of the heat exchanger,the constructal optimization of an H-shaped multi-scale heat exchanger is carried out by taking entransy dissipation efficiency maximization as optimization objective,and the optimal construct of the H-shaped multi-scale heat exchanger with maximum entransy dissipation efficiency is obtained.The results show that for the specified total tube volume of the heat exchanger,the optimal constructs of the first order T-shaped heat exchanger based on the maximizations of the thermal efficiency and entransy dissipation efficiency are obviously different with the lower mass flow rates of the cold and hot fluids.For the H-shaped multi-scale heat exchanger,the entransy dissipation efficiency decreases with the increase in mass flow rate when the heat exchanger order is fixed;for the specified dimensionless mass flow rate M(M<32.9),the entransy dissipation efficiency decreases with the increase in the heat exchanger order.The performance of the multi-scale heat exchanger is obviously improved compared with that of the single-scale heat exchanger.Moreover,the heat exchanger subjected to the total tube surface area constraint is also discussed in the paper.The optimization results obtained in this paper can provide a great compromise between the heat transfer and flow performances of the heat exchanger,provide some guidelines for the optimal designs of heat exchangers,and also enrich the connotation of entransy theory.展开更多
Hydraulic performance of an inlet plenum in a printed-circuit heat exchanger has been analyzed using three-dimensional Reynolds-Averaged Navier-Stokes equations. The numerical model of the inlet plenum was constructed...Hydraulic performance of an inlet plenum in a printed-circuit heat exchanger has been analyzed using three-dimensional Reynolds-Averaged Navier-Stokes equations. The numerical model of the inlet plenum was constructed through grid dependency test, calculation domain tests, and turbulence model and numerical scheme selections. Shear stress transport turbulence model was used for analysis of turbulence. Non-uniformity of the flow in zigzag flow channels was evaluated for the reference case. Parametric studies have been performed with the angle of the inlet plenum wall, radius of curvature of the inlet plenum wall, and width of the inlet pipes. The effects of these parameters on the flow uniformity and friction performance were evaluated.展开更多
文摘The influences of circular-ring turbulators (CRT) and twisted tape (TT) swirl generators on the heat transfer enhancement, pressure drop and thermal performance factor characteristics in a round tube are reported. The circular-ring turbulators were individually employed and together with the twisted tape swirl generators in the heated section of the tube. Three different pitch ratios (I/D = 1.0, 1.5, and 2.0) of the CRT and three different twist ratios (y/W= 3, 4, and 5) of the TT were introduced. The experiments were conducted using air as the working fluid under a uniform wall heat flux condition, for the Reynolds number between 6000 and 20000. The experimental results reveal that the heat transfer rate, friction factor and thermal performance factor of the combined CRT and qT are considerably higher than those of CRT alone. For the range examined, the Sncreases of mean Nusselt number, friction factor and thermal performance, in the tube equipped with combined devices, respectively, are 25.8%, 82.8% and 6.3% over those in the tube with the CRT alone. The highest thermal performance factor of 1.42 is found for the combined device consisting of the CRT with l/D = 1.0 and TT with y/W= 3. The correlations of the Nusselt number, friction factor and thermal performance factor of the tubes with combined devices are also developed in terms of Reynolds number, Prandtl number, twist ratio and pitch ratio.
文摘The orientation strategy of side pipe and the heat transfer performance of six ground heat exchangers(GHEs) were optimized by numerical simulation,with soil being treated as a porous medium.An experiment on the heat transfer of four GHEs was carried out in 2010.Results indicate that the velocity field is disturbed by GHEs.The optimal orientation strategy of side pipe is that the upward pipe is located upstream and the downward pipe downstream.The space between GHEs should be appropriately adjusted,depending on the direction and flow velocity.Groups of GHEs should be installed perpendicular to the mainstream in a single row,but if the acreage does not meet the requirements,GHEs should be installed in staggered multiple rows.Fewer GHEs parallel to the mainstream strengthen the heat transfer.Moreover,numerical results agree well with the test data,with the maximum relative error being less than 7.7%.
文摘This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of the pulsating airflow around the heating pillar mounted in the rectangular enclosure was investigated experimentally while changing the size of the clearance between the enclosure wall and the pillar. The pillar simulates the components mounted in thermal equipment such as fins and electrical components. The rectangular enclosure simulates an enclosure of electronic equipment and heat exchangers. The shape of the cross section of the pillar was square having sides 30 mm. The dimension of the width of the enclosure was changed from 50 mm to 80 mm. It was found that the heat transfer performance of the pulsating airflow became higher than that of the steady flow regardless of the dimension of the clearance. The heat transfer enhancement around heating components by the pulsating flow can be available regardless of the clearance around the components.
文摘As the operation time of heat exchanger is increased, the thermal performance of them is gradually degraded due to fouling generated by water-borne deposits which are known to reduce the thermal efficiencies. Currently, thermal performance management of heat exchangers is more importantly issued for long term operation. Therefore, the performance evaluation techniques are required to improve the present method for the integrity evaluation of heat exchangers because of the exclusion of fouling calculation and the uncertainty analysis. This paper describes the developed thermal performance evaluation technique applied to the safety-related heat exchangers such as component cooling heat exchangers in a nuclear power plants.
文摘Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergy- economic criteria which are defined as the total costs per unit heat transfer rate ηt for heat transfer exchanger and the net profit per unit heat recovery rate ηr for heat recovery exchanger respectively are put forward. Furthermore , the application of criteria is illustrated by the evaluation of down-flow, counter-flow and cross-flow heat exchangers performance. The methods employed and results presented in this paper can serve as a guide for the performance evaluation of heat exchangers.
基金supported by the Science and Technology Development Program of Shandong Province (Grant No.2009GG2ZC07006)
文摘The experimental study and analysis of a novel multi-media plate heat exchanger were performed in this paper.This novel multi-media plate heat exchanger was self-developed during the process of the investigation and design of the alpha magnetic spectrometer(AMS) thermal system.The plate of this kind of novel plate heat exchanger is formed by discontinuous structure wave consisting of convex sphere and concave sphere,its heat transfer performance is better than that of the BR1 chevron plate heat exchanger,and its resistance characteristics are superior to those of the normally used 60-degree plate heat exchanger.Furthermore,the mechanism analysis of heat transfer enhancement shows that the spherical wave structure can reduce the local field synergy angle,so as to improve the field synergy degree of velocity vector and temperature gradient vector.
基金supported by the National Natural Science Foundation of China (Grant No. 51176203)the Natural Science Foundation for Youngsters of Naval University of Engineering (Grant No. HGDQNJJ11008)
文摘Analogizing with the definition of thermal efficiency of a heat exchanger,the entransy dissipation efficiency of a heat exchanger is defined as the ratio of dimensionless entransy dissipation rate to dimensionless pumping power of the heat exchanger.For the constraints of the total tube volume and total tube surface area of the heat exchanger,the constructal optimization of an H-shaped multi-scale heat exchanger is carried out by taking entransy dissipation efficiency maximization as optimization objective,and the optimal construct of the H-shaped multi-scale heat exchanger with maximum entransy dissipation efficiency is obtained.The results show that for the specified total tube volume of the heat exchanger,the optimal constructs of the first order T-shaped heat exchanger based on the maximizations of the thermal efficiency and entransy dissipation efficiency are obviously different with the lower mass flow rates of the cold and hot fluids.For the H-shaped multi-scale heat exchanger,the entransy dissipation efficiency decreases with the increase in mass flow rate when the heat exchanger order is fixed;for the specified dimensionless mass flow rate M(M<32.9),the entransy dissipation efficiency decreases with the increase in the heat exchanger order.The performance of the multi-scale heat exchanger is obviously improved compared with that of the single-scale heat exchanger.Moreover,the heat exchanger subjected to the total tube surface area constraint is also discussed in the paper.The optimization results obtained in this paper can provide a great compromise between the heat transfer and flow performances of the heat exchanger,provide some guidelines for the optimal designs of heat exchangers,and also enrich the connotation of entransy theory.
基金supported by the National Research Foundation of Korea (NRF), (Grant No. 2009-0083510)funded by the Korean government (MSIP) through the Multi-phenomena CFD Engineering Research Center
文摘Hydraulic performance of an inlet plenum in a printed-circuit heat exchanger has been analyzed using three-dimensional Reynolds-Averaged Navier-Stokes equations. The numerical model of the inlet plenum was constructed through grid dependency test, calculation domain tests, and turbulence model and numerical scheme selections. Shear stress transport turbulence model was used for analysis of turbulence. Non-uniformity of the flow in zigzag flow channels was evaluated for the reference case. Parametric studies have been performed with the angle of the inlet plenum wall, radius of curvature of the inlet plenum wall, and width of the inlet pipes. The effects of these parameters on the flow uniformity and friction performance were evaluated.