Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of therm...Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.展开更多
In this paper the theoretical model is built for ZEpHyR(ZARM Experimental Hybrid Rocket) main engine which is being developed at ZARM institute,Bremen,Germany.The theoretical model is used to estimate the temperature ...In this paper the theoretical model is built for ZEpHyR(ZARM Experimental Hybrid Rocket) main engine which is being developed at ZARM institute,Bremen,Germany.The theoretical model is used to estimate the temperature of exhaust gas.The Conjugate Gradient Method(CGM) with Adjoint Problem for Function Estimation iterative technique is used to solve the Inverse Heat Conduction Problem(IHCP) to estimate the heat flux and internal wall temperature at the throat section of the nozzle.Bartz equation is used to calculate the convective heat transfer coefficient.The exhaust gas temperature is determined using the estimated heat flux,the wall temperature at internal surface of nozzle and the heat transfer coefficient.The accuracy of CGM iterative scheme to solve the IHCP is also investigated and its results are presented.展开更多
Heat transfer in the evacuated collector tube is a three-dimensional laminar natural convection prob-lem driven by buoyancy. Because of its complexity, no effective theoretical model is available despiteof limited exp...Heat transfer in the evacuated collector tube is a three-dimensional laminar natural convection prob-lem driven by buoyancy. Because of its complexity, no effective theoretical model is available despiteof limited experimental work which is confined to one aspect- The present work aims to depict theconvective heat transfer inside a tweended inclined tube with East-West symmetric heat input us-ing numerical methods. Based on reasonable assumptions, governing equations of the inside fluid areestabllshed. The corresponding discretizated equations are solved by employing numerical methods.The calculated results are displayed for velocity and temperature profiles on different cross-sectionalplanes, which present the flow pattern characterized by upflow and dowallow along the axial direc-tion and adherent flow along the peripheral direction, and the heat transfer process from the wall tothe center. Furthermore, the transient Nusselt number and average temperature level are shown anddiscussed. Finally, the parametric effects of the tube radius and the heat input on the flow and heattransfer are also given.展开更多
基金Projects(51974225,51674188,51874229,51904224,51904225,51704229)supported by the National Natural Science Foundation of ChinaProject(2018KJXX-083)supported by the Shaanxi Innovative Talents Cultivate Program-New-Star Plan of Science and Technology,China+2 种基金Projects(2018JM5161,2018JQ5183,2015JM-074)supported by the Natural Science Basic Research Plan of Shaanxi Province,ChinaProject(19JK0543)supported by the Scientific Research Program funded by Education Department of Shaanxi Province,ChinaProject(2018YQ201)supported by the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China。
文摘Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.
文摘In this paper the theoretical model is built for ZEpHyR(ZARM Experimental Hybrid Rocket) main engine which is being developed at ZARM institute,Bremen,Germany.The theoretical model is used to estimate the temperature of exhaust gas.The Conjugate Gradient Method(CGM) with Adjoint Problem for Function Estimation iterative technique is used to solve the Inverse Heat Conduction Problem(IHCP) to estimate the heat flux and internal wall temperature at the throat section of the nozzle.Bartz equation is used to calculate the convective heat transfer coefficient.The exhaust gas temperature is determined using the estimated heat flux,the wall temperature at internal surface of nozzle and the heat transfer coefficient.The accuracy of CGM iterative scheme to solve the IHCP is also investigated and its results are presented.
文摘Heat transfer in the evacuated collector tube is a three-dimensional laminar natural convection prob-lem driven by buoyancy. Because of its complexity, no effective theoretical model is available despiteof limited experimental work which is confined to one aspect- The present work aims to depict theconvective heat transfer inside a tweended inclined tube with East-West symmetric heat input us-ing numerical methods. Based on reasonable assumptions, governing equations of the inside fluid areestabllshed. The corresponding discretizated equations are solved by employing numerical methods.The calculated results are displayed for velocity and temperature profiles on different cross-sectionalplanes, which present the flow pattern characterized by upflow and dowallow along the axial direc-tion and adherent flow along the peripheral direction, and the heat transfer process from the wall tothe center. Furthermore, the transient Nusselt number and average temperature level are shown anddiscussed. Finally, the parametric effects of the tube radius and the heat input on the flow and heattransfer are also given.