In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inac...In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inaccurate or even unsafe results.Therefore,it was necessary to find a new correction method for complex reactions.In this work,esterification of acetic anhydride by methanol was chosen as an object reaction of study.The reaction was studied under different conditions by Reaction Calorimeter(RC1).Then,Thermal Safety Software(TSS)was used to establish the kinetic model and estimate the parameters,where,activation energies for three stages were67.09,81.02,73.77 kJ?mol^(-1)respectively,and corresponding frequency factors in logarithmic form were 16.05,19.59,15.72 s^(-1).In addition,two adiabatic tests were performed by Vent Sizing Package2(VSP2).For accurate correction of VSP2 tests,a new correction method based on Enhanced Fisher method was proposed.Combined with kinetics,adiabatic correction of esterification reaction was achieved.Through this research,accurate kinetic parameters for a three-step kinetic model of the esterification reaction were acquired.Furthermore,the correlation coefficients between simulated curves and corrected curves were 0.976 and 0.968,which proved the accuracy of proposed new adiabatic correction method.Based on this new method,conservative corrected results were able to be acquired and be applied in safety assessment.展开更多
In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear e...In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct this solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property.展开更多
文摘In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inaccurate or even unsafe results.Therefore,it was necessary to find a new correction method for complex reactions.In this work,esterification of acetic anhydride by methanol was chosen as an object reaction of study.The reaction was studied under different conditions by Reaction Calorimeter(RC1).Then,Thermal Safety Software(TSS)was used to establish the kinetic model and estimate the parameters,where,activation energies for three stages were67.09,81.02,73.77 kJ?mol^(-1)respectively,and corresponding frequency factors in logarithmic form were 16.05,19.59,15.72 s^(-1).In addition,two adiabatic tests were performed by Vent Sizing Package2(VSP2).For accurate correction of VSP2 tests,a new correction method based on Enhanced Fisher method was proposed.Combined with kinetics,adiabatic correction of esterification reaction was achieved.Through this research,accurate kinetic parameters for a three-step kinetic model of the esterification reaction were acquired.Furthermore,the correlation coefficients between simulated curves and corrected curves were 0.976 and 0.968,which proved the accuracy of proposed new adiabatic correction method.Based on this new method,conservative corrected results were able to be acquired and be applied in safety assessment.
基金supported by National Natural Science Foundation of China (Grant No.10971166)the National Basic Research Program of China (Grant No. 2005CB321703)
文摘In this paper, a semi-discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct this solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property.