The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North ...The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.展开更多
Abundant arc-type magmatic and metamorphic rocks exist on Earth today,which provide insights into the equilibrium state of the subduction process.However,magmatic samples generated during the initial stage of subducti...Abundant arc-type magmatic and metamorphic rocks exist on Earth today,which provide insights into the equilibrium state of the subduction process.However,magmatic samples generated during the initial stage of subduction is largely unknown.This hinders our understanding of the subduction initiation process and by inference,the onset of plate tectonics as well as the history of crustal formation.To address this issue,we carried out a comprehensive geochemical-geochronological study of a suite of Late Triassic to mid-Jurassic plutonic rocks from southern Alaska that potentially represent magmas from the initial to mature stages of arc formation.While all studied samples show typical arc-type geochemical signatures,i.e.,enrichment of large ion lithophile elements(LILEs)and depletion of high field strength elements(HFSEs)relative to the heavy rare earth elements(HREEs),the Late Triassic trondhjemites show unique geochemical features such as strongly positiveε_(Hf)(t)andε_(Nd)(t)coupled with lowerδ^(18)O(average 4.77‰±0.09‰).These signatures,along with its higher zircon saturation temperatures compared with younger plutonic rocks,are best explained by shallow partial melting of subducting high-temperature hydrothermally altered lower oceanic crust(i.e.,gabbro).If true,these surprising findings would open up new ways to study subduction initiation which would have important bearing on future research on the onset of global plate tectonics and the formation of the continental crust.展开更多
The subduction channel is defined as a planar to wedge-like area of variable size,internal structure and composition,which forms between the upper and lower plates during slab subduction into the mantle.The materials ...The subduction channel is defined as a planar to wedge-like area of variable size,internal structure and composition,which forms between the upper and lower plates during slab subduction into the mantle.The materials in the channel may experience complex pressure,temperature,stress and strain evolution,as well as strong fluid and melt activity.A certain amount of these materials may subduct to and later exhume from>100 km depth,forming high to ultra-high pressure rocks on the surface as widely discovered in nature.Rock deformation in the channel is strongly assisted by metamorphic fluids activities,which change composition and mechanical properties of rocks and thus affect their subduction and exhumation histories.In this study,we investigate the detailed structure and dynamics of both oceanic and continental subduction channels,by conducting highresolution petrological-thermomechanical numerical simulations taking into account fluid and melt activities.The numerical results demonstrate that subduction channels are composed of a tectonic rock melange formed by crustal rocks detached from the subducting slab and the hydrated mantle rocks scratched from the overriding plate.These rocks may either extrude sub-vertically upward through the mantle wedge to the crust of the upper plate,or exhume along the subduction channel to the surface near the suture zone.Based on our numerical results,we first analyze similarities and differences between oceanic and continental subduction channels.We further compare numerical models with and without fluid and melt activity and demonstrate that this activity results in strong weakening and deformation of overriding lithosphere.Finally,we show that fast convergence of orogens subjected to fluid and melt activity leads to strong deformation of the overriding lithosphere and the topography builds up mainly on the overriding plate.In contrast,slow convergence of such orogens leads to very limited deformation of the overriding lithosphere and the mountain building mainly occurs on the subducting plate.展开更多
During subduction processes, slabs continuously have heat exchange with the ambient mantle, including both conduction and advection effects. The evolution of slab thermal structure is one of the dominant factors in co...During subduction processes, slabs continuously have heat exchange with the ambient mantle, including both conduction and advection effects. The evolution of slab thermal structure is one of the dominant factors in controlling physical and chemical property changes in subduction zones. It also affects our understanding of many key geological processes, such as mineral dehydration, rock partial melting, arc volcanism, and seismic activities in subduction zones. There are mainly two ways for studying thermal structure of subduction zones with geodynamic models: analytical model and numerical model. Analytical model provides insights into the most dominant controlling physical parameters on the thermal structure, such as slab age, velocity and dip angle, shear stress and thermal conductivity, etc. Numerical model can further deal with more complicated environments, such as viscosity change in the mantle wedge, coupling process between slabs and the ambient mantle, and incorporation of petrology and mineralogy. When applying geodynamic modeling results to specific subduction zones on the Earth, there are many factors which may complicate the process, therefore it is difficult to precisely constrain the thermal structure of subduction zones. With the development of new quantitative methods in geophysics and geochemistry, we may obtain more observational constraints for thermal structure of subduction zones, thus providing more reasonable explanations for geological processes related to subduction zones.展开更多
基金Supported by the National Natural Science Foundation of China (Nos. 40906005, 40830106, 40730953, GYHY201106017)the National Basic Research Program of China (973 Program) (No. 2010CB428504)the National Key Technologies Research and Development Program of China (No. 2009BAC51B01)
文摘The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.
基金This work was supported by the National Natural Science Foundation of China(41688103)the Ministry of Science and Technology of China(2016YFC0600109).
文摘Abundant arc-type magmatic and metamorphic rocks exist on Earth today,which provide insights into the equilibrium state of the subduction process.However,magmatic samples generated during the initial stage of subduction is largely unknown.This hinders our understanding of the subduction initiation process and by inference,the onset of plate tectonics as well as the history of crustal formation.To address this issue,we carried out a comprehensive geochemical-geochronological study of a suite of Late Triassic to mid-Jurassic plutonic rocks from southern Alaska that potentially represent magmas from the initial to mature stages of arc formation.While all studied samples show typical arc-type geochemical signatures,i.e.,enrichment of large ion lithophile elements(LILEs)and depletion of high field strength elements(HFSEs)relative to the heavy rare earth elements(HREEs),the Late Triassic trondhjemites show unique geochemical features such as strongly positiveε_(Hf)(t)andε_(Nd)(t)coupled with lowerδ^(18)O(average 4.77‰±0.09‰).These signatures,along with its higher zircon saturation temperatures compared with younger plutonic rocks,are best explained by shallow partial melting of subducting high-temperature hydrothermally altered lower oceanic crust(i.e.,gabbro).If true,these surprising findings would open up new ways to study subduction initiation which would have important bearing on future research on the onset of global plate tectonics and the formation of the continental crust.
基金supported by the National Basic Research Program of China(Grant No.2015CB856106)the National Natural Science Foundation of China(Grant Nos.41304071,41425010)+2 种基金China Geological Survey Project(Grant No.12120114057301)the start-up research fund from the Institute of Geology of CAGSthe National‘Qian-Ren’Program for young scholars to ZHLI
文摘The subduction channel is defined as a planar to wedge-like area of variable size,internal structure and composition,which forms between the upper and lower plates during slab subduction into the mantle.The materials in the channel may experience complex pressure,temperature,stress and strain evolution,as well as strong fluid and melt activity.A certain amount of these materials may subduct to and later exhume from>100 km depth,forming high to ultra-high pressure rocks on the surface as widely discovered in nature.Rock deformation in the channel is strongly assisted by metamorphic fluids activities,which change composition and mechanical properties of rocks and thus affect their subduction and exhumation histories.In this study,we investigate the detailed structure and dynamics of both oceanic and continental subduction channels,by conducting highresolution petrological-thermomechanical numerical simulations taking into account fluid and melt activities.The numerical results demonstrate that subduction channels are composed of a tectonic rock melange formed by crustal rocks detached from the subducting slab and the hydrated mantle rocks scratched from the overriding plate.These rocks may either extrude sub-vertically upward through the mantle wedge to the crust of the upper plate,or exhume along the subduction channel to the surface near the suture zone.Based on our numerical results,we first analyze similarities and differences between oceanic and continental subduction channels.We further compare numerical models with and without fluid and melt activity and demonstrate that this activity results in strong weakening and deformation of overriding lithosphere.Finally,we show that fast convergence of orogens subjected to fluid and melt activity leads to strong deformation of the overriding lithosphere and the topography builds up mainly on the overriding plate.In contrast,slow convergence of such orogens leads to very limited deformation of the overriding lithosphere and the mountain building mainly occurs on the subducting plate.
基金supported by the National Basic Research Program of China(Grant No.2015CB856106)
文摘During subduction processes, slabs continuously have heat exchange with the ambient mantle, including both conduction and advection effects. The evolution of slab thermal structure is one of the dominant factors in controlling physical and chemical property changes in subduction zones. It also affects our understanding of many key geological processes, such as mineral dehydration, rock partial melting, arc volcanism, and seismic activities in subduction zones. There are mainly two ways for studying thermal structure of subduction zones with geodynamic models: analytical model and numerical model. Analytical model provides insights into the most dominant controlling physical parameters on the thermal structure, such as slab age, velocity and dip angle, shear stress and thermal conductivity, etc. Numerical model can further deal with more complicated environments, such as viscosity change in the mantle wedge, coupling process between slabs and the ambient mantle, and incorporation of petrology and mineralogy. When applying geodynamic modeling results to specific subduction zones on the Earth, there are many factors which may complicate the process, therefore it is difficult to precisely constrain the thermal structure of subduction zones. With the development of new quantitative methods in geophysics and geochemistry, we may obtain more observational constraints for thermal structure of subduction zones, thus providing more reasonable explanations for geological processes related to subduction zones.