期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
燃煤催化剂对煤炭燃烧性能的影响 被引量:11
1
作者 曹丽琼 《化工管理》 2015年第9期194-196,共3页
在煤的燃烧利用中存在燃烧不充分,热效率低,燃烧过程中会产生大量烟尘、二氧化硫等有害物质污染大气等问题,因此,发展"洁净煤技术",提高煤炭的资源利用率对国家长期发展战略具有重要的意义。本文以钢铁厂的氧化铁废渣为原料,... 在煤的燃烧利用中存在燃烧不充分,热效率低,燃烧过程中会产生大量烟尘、二氧化硫等有害物质污染大气等问题,因此,发展"洁净煤技术",提高煤炭的资源利用率对国家长期发展战略具有重要的意义。本文以钢铁厂的氧化铁废渣为原料,以烧失率、热值释放率以及硫释放率作为评价指标,研究燃煤催化剂Fe2O3对煤炭燃烧性能的影响。实验结果表明:添加催化剂可以促进煤炭的燃烧,提高煤炭的燃尽率,在燃烧的整个过程中都有明显的催化作用。但是催化剂过量又会阻碍煤炭的燃烧,所以催化剂量的加入应该适量并且少量。需要对实验结果进行量化,比如添加多少量,可以提高多高的燃尽率。合适的添加量为多少。 展开更多
关键词 燃煤催化剂 燃烧性能 烧失 热值释放
下载PDF
Effective thermal and electrical conductivity of graphite nanoplatelet composites 被引量:1
2
作者 周晓锋 张小松 周建成 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期158-161,共4页
The relationship between the thermal/electrical conductivity enhancement in graphite nanoplatelets (GNPs) composites and the properties of filling graphite nanoplatelets is studied. The effective thermal and electri... The relationship between the thermal/electrical conductivity enhancement in graphite nanoplatelets (GNPs) composites and the properties of filling graphite nanoplatelets is studied. The effective thermal and electrical conductivity enhancements of GNP-oil nanofluids and GNP-polyimide composites are measured. By taking into account the particle shape, the volume fraction, the thermal conductivity of filling particles and the base fluids, the thermal and electrical conductivity enhancements of GNP nanofluids are theoretically predicted by the generalized effective medium theory. Both the nonlinear dependence of effective thermal conductivity on the GNP volume fraction in nanofhiids and the very low percolation threshold for GNP-polyimide composites are well predicted. The theoretical predications are found to be in reasonably good agreement with the experimental data. The generalized effective medium theory can be used for predicting the thermal and electrical properties of GNP composites and it is still available for most of the thermal/electrical modifications in two-phase composites. 展开更多
关键词 graphite nanoplatelet nanofluids THERMALCONDUCTIVITY electrical conductivity percolation threshold
下载PDF
CNG—4000B多头数控气割机碳钢中薄板氧切割工艺
3
作者 吴文法 张爱琴 刘世国 《科技信息》 2007年第19期84-84,共1页
合理正确地选择氧气、乙炔(或丙烯)切割的工艺参数,是避免钢结构构件质量事故、简化工艺降低制作成本的重要途径。
关键词 热值率 切割氧流速比 割速 反变形隅量
下载PDF
Temperature Distribution in Ridge Structure InGaN Laser Diodes and Its Influence on Device Characteristics 被引量:1
4
作者 李德尧 黄永箴 +7 位作者 张书明 种明 叶晓军 朱建军 赵德刚 陈良惠 杨辉 梁骏吾 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第3期499-505,共7页
Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and ... Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency. 展开更多
关键词 InGaN laser diodes ridge waveguide thermal simulation threshold current slope efficiency
下载PDF
催化剂性能对煤炭燃烧产生的影响 被引量:1
5
作者 李晋萍 《化工设计通讯》 CAS 2017年第12期7-8,19,共3页
中国现今对于煤炭产业的长期发展战略离不开发展"洁净煤技术",以提高煤炭的资源利用率。然而在煤炭燃烧利用过程中存在燃烧不完全,热能利用效率低,利用过程中产生大量容易对大气产生污染的有害物质如烟尘、一氧化碳、二氧化... 中国现今对于煤炭产业的长期发展战略离不开发展"洁净煤技术",以提高煤炭的资源利用率。然而在煤炭燃烧利用过程中存在燃烧不完全,热能利用效率低,利用过程中产生大量容易对大气产生污染的有害物质如烟尘、一氧化碳、二氧化硫等气体,因此,提高煤炭的燃烧利用率对整个社会及国家都会产生极其重要的意义。以氧化铁废渣为原料,把评价指标侧重点放在烧失率、热值释放率和硫释放率上,研究对煤炭燃烧具有催化作用的Fe2O3对于燃烧性能的影响。通过一系列实验研究,最后得出结论 :煤炭的燃烧性可通过添加合适的催化剂得到提高,在整个燃烧过程中煤炭的燃尽率在催化剂的作用下有了明显的提高。但是煤炭的燃烧性能也会受到会阻碍,通过多次实验发现,催化剂量的加入应该适量并且少量,否则只能适得其反。在实验中,对结果进行多次量化,对于添加量进行调整,得到了对于提高燃尽率最为合适的添加量。 展开更多
关键词 燃煤催化剂 燃烧性能 烧失 热值释放
下载PDF
Metabolic rate and evaporative water loss in the silky starling (Sturnus sericeus) 被引量:1
6
作者 Huan-Huan BAO Qing-Jian LIANG +3 位作者 Hong-Lei ZHU Xiao-Qiu ZHOU Wei-Hong ZHENG Jin-Song LIU 《Zoological Research》 CAS CSCD 北大核心 2014年第4期280-286,共7页
To better understand the physiological characteristics of the silky starling(Sturnus sericeus), its body temperature(Tb), basal metabolic rate(BMR), evaporative water loss(EWL) and thermal conductance(C) eli... To better understand the physiological characteristics of the silky starling(Sturnus sericeus), its body temperature(Tb), basal metabolic rate(BMR), evaporative water loss(EWL) and thermal conductance(C) elicited by different ambient temperatures(Ta)(5-30 ℃) were determined in the present study. Our results showed that they have a high Tb(41.6±0.1 ℃), a wide thermal neutral zone(TNZ)(20-27.5 ℃) and a relatively low BMR within the TNZ(3.37±0.17 mL O2/g·h). The EWL was nearly stable below the TNZ(0.91±0.07 mg H2O/g·h) but increased remarkably within and above the TNZ. The C was constant below the TNZ, with a minimum value of 0.14±0.01 mL O2/g·h·℃. These findings indicate that the BMR, Tb and EWL of the silky starling were all affected by Ta, especially when Ta was below 20℃ and the EWL plays an important role in thermal regulation. 展开更多
关键词 Silky starling (Sturnus sericeus) Basal metabolic rate Body temperature Evaporative water loss
下载PDF
Thermal performance of a single U-tube ground heat exchanger:A parametric study
7
作者 Seyed Soheil MOUSAVI AJAROSTAGHI Hossein JAVADI +2 位作者 Seyed Sina MOUSAVI Sébastien PONCET Mohsen POURFALLAH 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3580-3598,共19页
In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capaci... In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capacity,and thermal conductivity of the backfill material,inlet volume flow rate,and inlet fluid temperature.The results are discussed in terms of the variations of the heat exchange rate,the effective thermal resistance,and the effectiveness of the ground heat exchanger.They show that the inlet volume flow rate,inlet fluid temperature,and backfill material thermal conductivity have significant effects on the thermal performance of the ground heat exchanger,such that by decreasing the inlet volume flow rate and increasing the backfill material thermal conductivity and inlet fluid temperature,the outlet fluid temperature decreases considerably.On the contrary,the soil porosity and backfill material volumetric heat capacity have negligible effects on the studied ground heat exchanger’s thermal performance.The lowest inlet fluid temperature reaches a the maximum effective thermal resistance of borehole and soil,and consequently the minimum heat transfer rate and effectiveness.Also,multilinear regression analyses are performed to determine the most feasible models able to predict the thermal properties of the single U-tube ground heat exchanger. 展开更多
关键词 single U-tube ground heat exchanger numerical simulation heat exchange rate EFFECTIVENESS multilinear regression analysis
下载PDF
Numerical Experiments on Critical Ventilation Velocity and Back-layer in Tunnel Fire 被引量:3
8
作者 杨培中 金浩 +1 位作者 邵钢 金先龙 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期42-46,共5页
Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5, 20 and 100 MW respectively. A co... Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5, 20 and 100 MW respectively. A computational fluid dynamics (CFD) model of fire-driven fluid flow FDS(Fire Dynamics Simulator) was used to solve numerically a form of the Navier-Stokes equations for fire. The results were compared with the expressions proposed in the literature. A modified equation for the critical ventilation velocity was given to better fit the experimental results. A bi-exponential model that well fitted the numerical experimental results was proposed to describe the relationship between back-layer distance and ventilation velocity. 展开更多
关键词 tunnel fire critical ventilation velocity heatrelease rate back-layer hi-exponential model.
下载PDF
Experimental and CFD investigations on cooling process of end-quench test 被引量:4
9
作者 Pei FU Ping ZHOU +2 位作者 Zi-wei XIE Hong-yu WU Ji-guang CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2440-2446,共7页
The microstructure of an alloy is affected intensively by the cooling process.To figure out the inherent relation between the cooling rate and microstructure of an advanced nickel-based superalloy,experimental and num... The microstructure of an alloy is affected intensively by the cooling process.To figure out the inherent relation between the cooling rate and microstructure of an advanced nickel-based superalloy,experimental and numerical studies on the cooling process were conducted.Specifically,the measurement was performed concerning both the temperature of the specimen during the end-quench test and the size of the secondaryγ′phase of the specimen after that.The heat transfer coefficient of the quenched surface was determined by the inverse heat transfer method for simulation.The results show that the cooling rate of the quenched surface exceeds 1574 K/min.Based on the averaged cooling rate obtained from the simulation and the measured size of the secondaryγ′phase,an empirical correlation in a double logarithmic relationship between them is proposed.The relationship is verified by the experiment with specified cooling rates. 展开更多
关键词 end-quench test numerical simulation cooling rate heat transfer coefficient nickel-based superalloy
下载PDF
Analysis of chamber effect on intermittent pulsation
10
作者 唐婵 张靖周 +1 位作者 谭晓茗 王春华 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3332-3345,共14页
A numerical study was conducted to seek an optimized dimension of jet chamber in the pulsating impinging flow.The flow and heat transfer effect of the pulsation flow through a jet chamber was investigated.The numerica... A numerical study was conducted to seek an optimized dimension of jet chamber in the pulsating impinging flow.The flow and heat transfer effect of the pulsation flow through a jet chamber was investigated.The numerical results indicate that heat transfer effective enhances near the stagnation region for the intermittent pulsed flow with jet chamber compared to that without jet chamber.Simulations of the flow through a jet chamber show that the heat transfer rate on the impingement surface is highly dependent on the velocity at the position which is really close to target surface.Examination of the velocity field suggests that the velocity exists a maximum value as the axis distance increases.In addition,the velocity at the jet hole is enlarged by the jet chamber due to the entrainment effect,and the velocity is amplified even greater as the size of the jet chamber becomes bigger.Nevertheless,the velocity declines quickly while the flow axis distance is more than a certain range,leading to poor heat transfer.Thus,intermittent pulsed flow with jet chamber is suggested as a method of improving heat transfer by employing larger dimensions of jet chamber for appropriate jet-to-surface spacing. 展开更多
关键词 pulsed impinging jet intermittent pulsation jet chamber Nusselt number
下载PDF
Numerical simulation and model of control-efficiency of thermal crown of work rolls in cold rolling 被引量:1
11
作者 李学通 王敏婷 +1 位作者 杜凤山 张国良 《Journal of Central South University》 SCIE EI CAS 2014年第6期2160-2167,共8页
Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown o... Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling. 展开更多
关键词 cold rolling finite difference method thermal crown control-efficiency factor
下载PDF
Conjugate Heat Transfer Investigation on the Cooling Performance of Air Cooled Turbine Blade with Thermal Barrier Coating 被引量:5
12
作者 JI Yongbin MA Chao +1 位作者 GE Bing ZANG Shusheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期325-335,共11页
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is perf... A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side. 展开更多
关键词 gas turbine blade thermal barrier coating cooling efficiency conjugate heat transfer
原文传递
Convective Transport in Rectangular Cavities Partially Heated at the Bottom and Cooled at One Side 被引量:1
13
作者 C.Cianfrini M.Corcione +1 位作者 E.Habib A.Quintino 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第1期55-63,共9页
Laminar natural convection heat transfer inside air-filled, rectangular enclosures partially heated from below and cooled at one side is studied numerically. A computational code based on the SIMPLE-C algorithm is use... Laminar natural convection heat transfer inside air-filled, rectangular enclosures partially heated from below and cooled at one side is studied numerically. A computational code based on the SIMPLE-C algorithm is used for the solution of the system of the mass, momentum, and energy transfer governing equations. Simulations are performed for a complete range of heater size, for Rayleigh numbers based on the height of the cavity ranging from 10~3to 10~6, and for height-to-width aspect ratios of the cavity spanning from 0.25 to 4. It is found that the heat transfer rate increases with increasing the heater size and the Rayleigh number, while it decreases with increasing the aspect ratio of the cavity. Dimensionless heat transfer correlations are also proposed. 展开更多
关键词 natural convection ENCLOSURE partial heating numerical analysis dimensionless correlations
原文传递
Numerical study on solid–liquid phase change in paraffin as phase change material for battery thermal management 被引量:3
14
作者 Qiannan Zhang Yutao Huo Zhonghao Rao 《Science Bulletin》 SCIE EI CAS CSCD 2016年第5期391-400,共10页
With the large latent heat and low cost, the paraffin has been widely used in battery thermal management(BTM) system to improve the efficiency and cycling life of power battery. The numerical model of paraffin melting... With the large latent heat and low cost, the paraffin has been widely used in battery thermal management(BTM) system to improve the efficiency and cycling life of power battery. The numerical model of paraffin melting in a cavity has been established, and the effects on the solid–liquid phase change process have been investigated for the purpose of enhancing the heat transfer performance of paraffin-based BTM system. The results showed that the location of the heating wall had great effects on the melting process. The paraffin in the cavity melted most quickly when the heating wall located at the bottom. Furthermore, the effects of thermal conductivity and the velocity of the slip wall have been considered. The gradient of liquid fraction increased with the increase in thermal conductivity, and the melting process could be accelerated or delayed by the slip wall with different velocity. 展开更多
关键词 Phase change material Battery thermal management Solid–liquid phase change Heat flux Thermal conductivity
原文传递
Numerical study on the heat dissipation characteristics of high-power LED module 被引量:5
15
作者 LEE DaeWoo CHO Sung-Wook KIM Youn-Jea 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第9期2150-2155,共6页
LED lighting has problems such as short life span, power reduction due to the LED chip's heat, and decreased luminance efficiency etc. Many studies on the optimization of the thermal performance of LEDs have been ... LED lighting has problems such as short life span, power reduction due to the LED chip's heat, and decreased luminance efficiency etc. Many studies on the optimization of the thermal performance of LEDs have been conducted actively to solve these problems. The present study changes the fin shape and intervals of various heat sink designs so that LED can effectively produce a thermal effect. The water-cooling heat release system and the heat pipe methods show higher thermal performance results than the existing systems; however, the system is of high cost and requires a large-scale apparatus. This study carried out a numerical analysis of the thermal control system by applying heat flux and heat sink properties as an active heat release system using the commercial code ANSYS ver. 13.0 and verified the validity of the new heat sink design for temperature distribution analysis. 展开更多
关键词 LED lighting water-cooling heat release system heat loss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部