Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amo...Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amounts of ionic liquid on the structural,optical and photocatalytic properties of the samples were investigated.Characterization results show that more compact interlayer sacking can be achieved by post‐thermal treatment.Combined with C‐I codoping by insertion of ionic liquids,much enlarged surface area but optimized sp2 conjugated heterocyclic structure can be found in the catalysts.Optical and energy band analysis results evidence that the light absorptions especially in visible light region are significantly improved.Although the band gap of porous C‐I codoped samples enlarge because of the generation of porous,the negatively shifted conduction band position thermodynamically supplies stronger motivation for water reduction.Photoelectricity tests reveal that the photo‐induced electron density was increased after C‐I codoping modification.Also,the recombination rate of electron‐hole pairs is remarkably inhibited.The catalysts with moderate C‐I codoing content perform sharply enhanced photocatalytic H2 evolution activity under visible light irradiation.A H2 evolution rate of 168.2μmol/h was achieved and it was more than 9.8 times higher than pristine carbon nitride.This study demonstrates a novel non‐metal doping strategy for synthesis and optimization of polymer semiconductor with gratifying photocatalytic H2 evolution performance from water hydrolysis.展开更多
ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on...ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal.展开更多
A homogeneous layer of Bi_2O_3-Bi_(14)WO_(24) composite(BWO/Bi_2O_3) thin film was fabricated using a combination of electrodeposition and thermal treatment. The evenly distributed Bi14 WO24 component within the Bi_2O...A homogeneous layer of Bi_2O_3-Bi_(14)WO_(24) composite(BWO/Bi_2O_3) thin film was fabricated using a combination of electrodeposition and thermal treatment. The evenly distributed Bi14 WO24 component within the Bi_2O_3 layer was found to be important in stabilising the photoelectrochemical performances of Bi_2O_3 photoanode by promoting the photoelectron transport. The unmodified Bi_2O_3 suffered from severe photocorrosion as proven by X-ray diffraction(XRD) and inductively coupled plasma(ICP) analyses while the composite thin film was active without noticeable activity decay for at least 3 h of illumination. This strategy might be applicable to other photocatalysts with stability issues.展开更多
Anatase TiO2 microspheres with exposed dominant {001} facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substit...Anatase TiO2 microspheres with exposed dominant {001} facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560℃ to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520℃ that gave a high absorbance over the whole visible light region but with no defect-related background absorption.展开更多
Bifurcation analysis of ignition and extinction of catalytic combustion in a short micro-channel is carded out with the laminar flow model incorporated as the flow model. The square of transverse Thiele modulus and th...Bifurcation analysis of ignition and extinction of catalytic combustion in a short micro-channel is carded out with the laminar flow model incorporated as the flow model. The square of transverse Thiele modulus and the residence time are used as bifurcation parameters. The influences of different parameters on ignition and extinction behavior are investigated. It is shown that all these parameters have great effects on the bifurcation behaviors of ignition and extinction in the short micro-channel. The effects of flow models on bifurcation behaviors of combustion are also analyzed. The results show that in comparison with the flat velocity profile model, for the case of the laminar flow model, the temperatures of ignition and extinction of combustion are higher and the unsteady multiple solution region is larger.展开更多
基金the National Natural Science Foundation of China(21503096,21407067)the Natural Science Foundation of Jiangsu Province(BK20140506)~~
文摘Porous C‐I codoped carbon nitride materials were synthesized by in‐situ codoping with iodized ionic liquid followed by post‐thermal treatment in air.The effects of doping content of C‐I codoping with different amounts of ionic liquid on the structural,optical and photocatalytic properties of the samples were investigated.Characterization results show that more compact interlayer sacking can be achieved by post‐thermal treatment.Combined with C‐I codoping by insertion of ionic liquids,much enlarged surface area but optimized sp2 conjugated heterocyclic structure can be found in the catalysts.Optical and energy band analysis results evidence that the light absorptions especially in visible light region are significantly improved.Although the band gap of porous C‐I codoped samples enlarge because of the generation of porous,the negatively shifted conduction band position thermodynamically supplies stronger motivation for water reduction.Photoelectricity tests reveal that the photo‐induced electron density was increased after C‐I codoping modification.Also,the recombination rate of electron‐hole pairs is remarkably inhibited.The catalysts with moderate C‐I codoing content perform sharply enhanced photocatalytic H2 evolution activity under visible light irradiation.A H2 evolution rate of 168.2μmol/h was achieved and it was more than 9.8 times higher than pristine carbon nitride.This study demonstrates a novel non‐metal doping strategy for synthesis and optimization of polymer semiconductor with gratifying photocatalytic H2 evolution performance from water hydrolysis.
基金Project (No. 29976036) supported by the National Natural Science Foundation of China
文摘ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal.
基金supported by the Australian Research Council under the Laureate Fellowship Scheme(FL140100081)
文摘A homogeneous layer of Bi_2O_3-Bi_(14)WO_(24) composite(BWO/Bi_2O_3) thin film was fabricated using a combination of electrodeposition and thermal treatment. The evenly distributed Bi14 WO24 component within the Bi_2O_3 layer was found to be important in stabilising the photoelectrochemical performances of Bi_2O_3 photoanode by promoting the photoelectron transport. The unmodified Bi_2O_3 suffered from severe photocorrosion as proven by X-ray diffraction(XRD) and inductively coupled plasma(ICP) analyses while the composite thin film was active without noticeable activity decay for at least 3 h of illumination. This strategy might be applicable to other photocatalysts with stability issues.
基金supported by the Major Basic Research Program, Ministry of Science and Technology of China (2014CB239401)the National Natural Science Fundation of China (51422210, 21633009, 51629201 and 51521091)the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-JSC039)
文摘Anatase TiO2 microspheres with exposed dominant {001} facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560℃ to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520℃ that gave a high absorbance over the whole visible light region but with no defect-related background absorption.
基金the National Key Basic Research Project of China(No.2001CB209201)
文摘Bifurcation analysis of ignition and extinction of catalytic combustion in a short micro-channel is carded out with the laminar flow model incorporated as the flow model. The square of transverse Thiele modulus and the residence time are used as bifurcation parameters. The influences of different parameters on ignition and extinction behavior are investigated. It is shown that all these parameters have great effects on the bifurcation behaviors of ignition and extinction in the short micro-channel. The effects of flow models on bifurcation behaviors of combustion are also analyzed. The results show that in comparison with the flat velocity profile model, for the case of the laminar flow model, the temperatures of ignition and extinction of combustion are higher and the unsteady multiple solution region is larger.