The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0...The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0m) and thermal roughness length (z0h) are two crucial parameters for bulk transfer equations. To improve the meteorological models, the seasonal and interannual variations of Z0m, Z0h, coefficient kB-1, Cd, and Ch were investigated based on eddy covariance data over different grazed semiarid grasslands of Inner Mongolia during the growing seasons (May to September) from 2005 to 2008. For an ungrazed Leymus chinensis grassland (ungrazed since 1979), Z0m and z0h had significant seasonal and in- terannual variations. Zorn was affected by the amount and distribution of rainfall, kB 1 exhibited a relatively negative variation compared with z0h, which indicates that the seasonal variation of z0h cannot be described by kB 1. To parameterize Zorn and z0h, the linear regressions between ln(z0m), ln(z0h), and the leaf area index (LAI) were performed with R2=0.71 and 0.83. The monthly average kB-1 was found to decrease linearly with LAI. The four-year averaged values of Ca and Ch were 4.5 × 10^-3 and 3.9× 10^-3, respectively. The monthly average Cd only varied by 8% while the variation of Ch was 18%, which reflects the dif- ferent impacts of dead vegetation on momentum and heat transfer at this natural grassland. Moreover, with the removal of vegetation cover, grazing intensities reduced Z0m, Z0h, Cd, and Ch.展开更多
Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in th...Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in the Asian-western Pacific(AWP)region and the relationship between tropical synoptic waves and ISOs are examined by means of finite-domain wavenumber-frequency energy spectrum analysis and lagged linear regression technique.The results are shown as follows.(1)The AWP ISOs propagate both eastward and westward,showing seasonality and regionality.The ISOs propagate eastward with a period of 30 to 60 days over equatorial regions in the whole AWP region,while the westward propagation occurs over 10 to 20°N western Pacific or in the late summers(August,September and October) with periods of 20 to 40 days.The ISOs eastward propagation mainly occurs in primary summers while the westward propagation enhances in late summers.(2)Deep ISO convections associate with westerly and cyclonic circulation anomalies that first form in the Indian Ocean,propagate eastward to the dateline in the Pacific and then turn northwestward.The ISOs convections show northwestward propagating characteristics in the western North Pacific.(3)The ISOs link with the tropical synoptic waves closely.Both convection signals,though with different spatio-temporal scale,enhance simutaneously in the northwestern Pacific,and the ISOs facilitate the forming of a cluster of tropical cyclones(TCs),while a cluster of TCs convection becomes one portion of the northwestward ISOs.展开更多
基金supported by the German Science Foundation (DFG) within the Research Group 536"MAGIM" (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) under Grant BE 172/7-1 in cooperation with Inner Mongolia Grassland Ecosystem Research Stationthe National Basic Research Program of China (973 Program) under Grant 2010CB951801the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA05110102
文摘The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0m) and thermal roughness length (z0h) are two crucial parameters for bulk transfer equations. To improve the meteorological models, the seasonal and interannual variations of Z0m, Z0h, coefficient kB-1, Cd, and Ch were investigated based on eddy covariance data over different grazed semiarid grasslands of Inner Mongolia during the growing seasons (May to September) from 2005 to 2008. For an ungrazed Leymus chinensis grassland (ungrazed since 1979), Z0m and z0h had significant seasonal and in- terannual variations. Zorn was affected by the amount and distribution of rainfall, kB 1 exhibited a relatively negative variation compared with z0h, which indicates that the seasonal variation of z0h cannot be described by kB 1. To parameterize Zorn and z0h, the linear regressions between ln(z0m), ln(z0h), and the leaf area index (LAI) were performed with R2=0.71 and 0.83. The monthly average kB-1 was found to decrease linearly with LAI. The four-year averaged values of Ca and Ch were 4.5 × 10^-3 and 3.9× 10^-3, respectively. The monthly average Cd only varied by 8% while the variation of Ch was 18%, which reflects the dif- ferent impacts of dead vegetation on momentum and heat transfer at this natural grassland. Moreover, with the removal of vegetation cover, grazing intensities reduced Z0m, Z0h, Cd, and Ch.
基金National Basic Research Program of China(973 Program)(2009CB421503)Natural Science Foundation of China(41075073+2 种基金40775058)Tropical Marine&Meteorologic Science Foundation(201103)Natural Science Foundation of Guangxi(2010GXNSFA013010)
文摘Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in the Asian-western Pacific(AWP)region and the relationship between tropical synoptic waves and ISOs are examined by means of finite-domain wavenumber-frequency energy spectrum analysis and lagged linear regression technique.The results are shown as follows.(1)The AWP ISOs propagate both eastward and westward,showing seasonality and regionality.The ISOs propagate eastward with a period of 30 to 60 days over equatorial regions in the whole AWP region,while the westward propagation occurs over 10 to 20°N western Pacific or in the late summers(August,September and October) with periods of 20 to 40 days.The ISOs eastward propagation mainly occurs in primary summers while the westward propagation enhances in late summers.(2)Deep ISO convections associate with westerly and cyclonic circulation anomalies that first form in the Indian Ocean,propagate eastward to the dateline in the Pacific and then turn northwestward.The ISOs convections show northwestward propagating characteristics in the western North Pacific.(3)The ISOs link with the tropical synoptic waves closely.Both convection signals,though with different spatio-temporal scale,enhance simutaneously in the northwestern Pacific,and the ISOs facilitate the forming of a cluster of tropical cyclones(TCs),while a cluster of TCs convection becomes one portion of the northwestward ISOs.