An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model i...An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.展开更多
We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and...We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and coupling parameter γ. Below the transition temperature Tc, the distribution Q function in the squeezed thermal spin state presents a richer structure than in the normal state. Non-classical effects have been observed. In the transition from the normal to the squeezed thermal spin state, the phase symmetry of the magnon system is spontaneously broken.展开更多
Thermal losses for a buried vertical thin plate can be expressed as a function of the assigned temperature distribution,the medium conductivity and the geometrical properties that describe the model. When the geometri...Thermal losses for a buried vertical thin plate can be expressed as a function of the assigned temperature distribution,the medium conductivity and the geometrical properties that describe the model. When the geometricalproperties reduce to one, the plate-ground thermal resistance can be expressed regardless of plate dimension, dependingonly on temperature distribution given at surface plate and its temperature difference with medium.展开更多
A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation ...A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation satisfied by the polymeric moment of interest is given, and as a result the zeroth, first, second, and third polymeric moments together with the size distribution function of hyperbranched polymers(HBPs) are explicitly presented. As an application of the method of statistical mechanics, several thermodynamic quantities such as the equilibrium free energy, law of mass action, isothermal compressibility, internal energy, and the specific heat associated with the polymerization are all derived. Furthermore, the scaling behavior of asymptotic size distribution function is discussed, by which a reasonable interpretation of the polydispersity index near the end of polymerization can be made. Also, the expressions of some structural parameters such as the numbers of inimers, terminal units, chain units, branched units, and the degree of branching(DB) are calculated. It is found that a high functionality is helpful to improve the DB of the resultant HBPs. These results show that the functionality f has a significant effect on the thermodynamic quantities and structural properties of HBPs.展开更多
基金Supported by the Chung Yuan Christian University (CYCU-97-CR-CE)
文摘An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.
基金supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and coupling parameter γ. Below the transition temperature Tc, the distribution Q function in the squeezed thermal spin state presents a richer structure than in the normal state. Non-classical effects have been observed. In the transition from the normal to the squeezed thermal spin state, the phase symmetry of the magnon system is spontaneously broken.
文摘Thermal losses for a buried vertical thin plate can be expressed as a function of the assigned temperature distribution,the medium conductivity and the geometrical properties that describe the model. When the geometricalproperties reduce to one, the plate-ground thermal resistance can be expressed regardless of plate dimension, dependingonly on temperature distribution given at surface plate and its temperature difference with medium.
基金supported by the National Natural Science Foundation of China(21274056,21374028)Natural Science Foundation of Hebei province(B2015408007)the doctoral funds of Langfang Teachers University(LSBS201308)
文摘A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation satisfied by the polymeric moment of interest is given, and as a result the zeroth, first, second, and third polymeric moments together with the size distribution function of hyperbranched polymers(HBPs) are explicitly presented. As an application of the method of statistical mechanics, several thermodynamic quantities such as the equilibrium free energy, law of mass action, isothermal compressibility, internal energy, and the specific heat associated with the polymerization are all derived. Furthermore, the scaling behavior of asymptotic size distribution function is discussed, by which a reasonable interpretation of the polydispersity index near the end of polymerization can be made. Also, the expressions of some structural parameters such as the numbers of inimers, terminal units, chain units, branched units, and the degree of branching(DB) are calculated. It is found that a high functionality is helpful to improve the DB of the resultant HBPs. These results show that the functionality f has a significant effect on the thermodynamic quantities and structural properties of HBPs.