The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and res...The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.展开更多
Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heatpreservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional ...Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heatpreservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional model of aluminum foam is builtto deduce the relationship among pore wall thickness, porosity and average pore size. Non-uniform closed-cell foam aluminummodel with different structural parameters and random pore distribution is established based on the relationship via C programminglanguage. And the temperature distribution is analyzed with ANSYS software. Results indicate that thermal conductivity increaseswith the reducing of porosity. For the aluminum foam with the same porosity, different pore distributions result in different thermalconductivities. The temperature distribution in aluminum foam is non-uniform, which is closely related with the pore size anddistribution. The pores which extend or distribute along the direction perpendicular to heat flow strengthen obstructive capability forheat flow. When pores connect along the direction perpendicular to heat flow, a “wall of high thermal resistance” appears to declinethe thermal conductivity rapidly, which shows that only porosity cannot completely determine effective thermal conductivity ofclosed-cell aluminum foam.展开更多
The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of ...The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of the pressure on the radial thermal conductivity (K^r) and wall heat transfer coefficient (h~) for both pellets and monolith catalysts. The study included beds that were packed with pellets and monoliths, separately. The radial temperature distribution was measured at different beds heights and feed flow rates for both types of packing. Steady-state temperatures were measured using nine chromel-alumel thermocouples arranged on a stainless steel-cross. After temperatures were collected, the radial thermal conductivity and wall heat transfer coefficient were calculated using a two-dimensional pseudo-homogeneous model. The results showed that, the radial temperature profile at the entrance of the heating section was nearly even, and a constant temperature along the radius (0F/0r=0) taken as a boundary condition to solve the partial differential equation controlling the heat transfer. Temperature profiles obtained at elevated pressures were smoother at the center of the reactor and increased sharply near the wall, than profiles at atmospheric pressure. It could also be observed, that the radial temperature profiles in the center of the reactor using a monolith catalyst at elevated pressure were more even and smoother than those of pellets. Temperature profiles in fixed beds were found to be very sensitive to Ker and hw. In pressures between atmospheric and 10 bars, there was no change in the effective heat transport parameters (i.e. they are independent of pressure in this range). Both parameters were strongly affected by the pressure changes, above 10 bars. For the same Reynolds number (Ker) increased by 27% and 53% at 11 and 20 bars, respectively, in pellets catalyst. And they increased by factors of 2.3 and 4, when the pressure increased to the same pressures, in monolith catalyst. On the other hand, the effect of pressure on (hw) was completely the opposite, h,~ for pellets and monolith catalysts were found to be decreasing with increasing the pressure. Moreover, both coefficients increased with the Reynolds number at all applied pressures. This increase was higher for pellets than it for monoliths.展开更多
We present an empirical model for the effective thermal conductivity (ETC) of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution. The ETC is determine...We present an empirical model for the effective thermal conductivity (ETC) of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution. The ETC is determined based on certain hypotheses that connect the behavior of a real composite material A, to that of a model composite material B, filled with mono-dimensional filler. The application of these hypotheses to the Maxwell model for ETC is presented. The validation of the new model and its characteristic equation was carried out using experimental data from the reference. The comparison showed that by using the size distribution law a very good fit between the equation of the new model (the size distribution model for the ETC) and the reference experimental results is obtained, even for high volume fractions, up to about 50%.展开更多
A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation ...A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation satisfied by the polymeric moment of interest is given, and as a result the zeroth, first, second, and third polymeric moments together with the size distribution function of hyperbranched polymers(HBPs) are explicitly presented. As an application of the method of statistical mechanics, several thermodynamic quantities such as the equilibrium free energy, law of mass action, isothermal compressibility, internal energy, and the specific heat associated with the polymerization are all derived. Furthermore, the scaling behavior of asymptotic size distribution function is discussed, by which a reasonable interpretation of the polydispersity index near the end of polymerization can be made. Also, the expressions of some structural parameters such as the numbers of inimers, terminal units, chain units, branched units, and the degree of branching(DB) are calculated. It is found that a high functionality is helpful to improve the DB of the resultant HBPs. These results show that the functionality f has a significant effect on the thermodynamic quantities and structural properties of HBPs.展开更多
文摘The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.
基金Project(51304254)supported by the National Natural Science Foundation of ChinaProject(2015JC3001)supported by the Ministry of Science and Technology of Hunan Province,China
文摘Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heatpreservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional model of aluminum foam is builtto deduce the relationship among pore wall thickness, porosity and average pore size. Non-uniform closed-cell foam aluminummodel with different structural parameters and random pore distribution is established based on the relationship via C programminglanguage. And the temperature distribution is analyzed with ANSYS software. Results indicate that thermal conductivity increaseswith the reducing of porosity. For the aluminum foam with the same porosity, different pore distributions result in different thermalconductivities. The temperature distribution in aluminum foam is non-uniform, which is closely related with the pore size anddistribution. The pores which extend or distribute along the direction perpendicular to heat flow strengthen obstructive capability forheat flow. When pores connect along the direction perpendicular to heat flow, a “wall of high thermal resistance” appears to declinethe thermal conductivity rapidly, which shows that only porosity cannot completely determine effective thermal conductivity ofclosed-cell aluminum foam.
文摘The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of the pressure on the radial thermal conductivity (K^r) and wall heat transfer coefficient (h~) for both pellets and monolith catalysts. The study included beds that were packed with pellets and monoliths, separately. The radial temperature distribution was measured at different beds heights and feed flow rates for both types of packing. Steady-state temperatures were measured using nine chromel-alumel thermocouples arranged on a stainless steel-cross. After temperatures were collected, the radial thermal conductivity and wall heat transfer coefficient were calculated using a two-dimensional pseudo-homogeneous model. The results showed that, the radial temperature profile at the entrance of the heating section was nearly even, and a constant temperature along the radius (0F/0r=0) taken as a boundary condition to solve the partial differential equation controlling the heat transfer. Temperature profiles obtained at elevated pressures were smoother at the center of the reactor and increased sharply near the wall, than profiles at atmospheric pressure. It could also be observed, that the radial temperature profiles in the center of the reactor using a monolith catalyst at elevated pressure were more even and smoother than those of pellets. Temperature profiles in fixed beds were found to be very sensitive to Ker and hw. In pressures between atmospheric and 10 bars, there was no change in the effective heat transport parameters (i.e. they are independent of pressure in this range). Both parameters were strongly affected by the pressure changes, above 10 bars. For the same Reynolds number (Ker) increased by 27% and 53% at 11 and 20 bars, respectively, in pellets catalyst. And they increased by factors of 2.3 and 4, when the pressure increased to the same pressures, in monolith catalyst. On the other hand, the effect of pressure on (hw) was completely the opposite, h,~ for pellets and monolith catalysts were found to be decreasing with increasing the pressure. Moreover, both coefficients increased with the Reynolds number at all applied pressures. This increase was higher for pellets than it for monoliths.
基金Project (No. 71-088/2007) supported by Program "Partnerships in Priority Areas", the Romanian Ministry of Education and Research
文摘We present an empirical model for the effective thermal conductivity (ETC) of a polymer composite that includes dependency on the filler size distribution-chosen as the Rosin-Rammler distribution. The ETC is determined based on certain hypotheses that connect the behavior of a real composite material A, to that of a model composite material B, filled with mono-dimensional filler. The application of these hypotheses to the Maxwell model for ETC is presented. The validation of the new model and its characteristic equation was carried out using experimental data from the reference. The comparison showed that by using the size distribution law a very good fit between the equation of the new model (the size distribution model for the ETC) and the reference experimental results is obtained, even for high volume fractions, up to about 50%.
基金supported by the National Natural Science Foundation of China(21274056,21374028)Natural Science Foundation of Hebei province(B2015408007)the doctoral funds of Langfang Teachers University(LSBS201308)
文摘A new self-condensing vinyl polymerization system consisting of *ABf-type inimers is studied by the principle of statistical mechanics. To obtain the relevant average properties of the system, a differential equation satisfied by the polymeric moment of interest is given, and as a result the zeroth, first, second, and third polymeric moments together with the size distribution function of hyperbranched polymers(HBPs) are explicitly presented. As an application of the method of statistical mechanics, several thermodynamic quantities such as the equilibrium free energy, law of mass action, isothermal compressibility, internal energy, and the specific heat associated with the polymerization are all derived. Furthermore, the scaling behavior of asymptotic size distribution function is discussed, by which a reasonable interpretation of the polydispersity index near the end of polymerization can be made. Also, the expressions of some structural parameters such as the numbers of inimers, terminal units, chain units, branched units, and the degree of branching(DB) are calculated. It is found that a high functionality is helpful to improve the DB of the resultant HBPs. These results show that the functionality f has a significant effect on the thermodynamic quantities and structural properties of HBPs.