Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mecha...Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.展开更多
A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at...A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.展开更多
The energy utilization consistency method in process integration extracts the key component of process energy utilization, and simplifies the procedure of process analysis and integration. The method allows the conver...The energy utilization consistency method in process integration extracts the key component of process energy utilization, and simplifies the procedure of process analysis and integration. The method allows the conversion of the total process energy integration into a synthesis problem of a pseudo-heat exchanger network. The advantages of using the energy utilization consistency and the pseudo-temperature methods are presented by two examples of integration of large-scale complex processes. The improved genetic algorithm is proved to be an effective tool in the retrofitting procedures.展开更多
A novel heat-integrated distillation scheme on pilot scale for producing C5 foaming agent, a mixture of isopentane and pentane in a certain proportion, was proposed with the aid of process simulation. Compared with th...A novel heat-integrated distillation scheme on pilot scale for producing C5 foaming agent, a mixture of isopentane and pentane in a certain proportion, was proposed with the aid of process simulation. Compared with the conventional distillation scheme, C5 foaming agent was directly separated at the top of the original isopentane or pentane column in the novel scheme, instead of first refining the two isomerides to high purities and then mixing them into final products. This improvement reduced the difficulty of the separation and avoided meaningless exergy loss caused by re-mixing, which finally contributed to an energy-efficient design by a big margin. Moreover, the column grand composite curves(CGCCs)were used to modify all distillation columns, indicating that there is potential to improve the energy efficiency further. Therefore, double-effect, or heat-integrated distillation was also adopted. Energy and exergy analyses were then conducted to evaluate the effectiveness of the proposed scheme for the purpose of energy saving. The simulation results of the conventional distillation scheme were in agreement with its on-site counterpart. Analyses showed that the novel heat-integrated scheme reduced hot utility by 27.12%,, cold utility by 24.49%,, and total exergy loss by 23.95%,.展开更多
A novel continuous-flow PCR chip adopting self-heating, passive-cooling mode to realize the DNA fragments amplification was presented. Using the ANSYS finite element analysis, the temperature distribution of the chip ...A novel continuous-flow PCR chip adopting self-heating, passive-cooling mode to realize the DNA fragments amplification was presented. Using the ANSYS finite element analysis, the temperature distribution of the chip is simulated and analyzed.The optimal size of the chip is 30×22 mm2, the roundabout micro-channel is the 90 μm width, 40 μm depth. Two micro-heater with the nickel-chrome alloy material film are formed on the side of silicon belonging to denaturation and renaturation zones needed for PCR reaction, and two adiabatic structures with groove on side of silicon by anisotropy etching. By the mode of heating local zones at single side, three wider constant temperature zones could be formed, which are 60 ℃,72 ℃,95 ℃ and suitable for PCR,and the temperature-difference could be restricted in less than 5 ℃.展开更多
This paper describes how to achieve an efficient design and management of a tele-monitoring system of several solar thermal plants. The system will be able to make an analysis that assures a more efficient management ...This paper describes how to achieve an efficient design and management of a tele-monitoring system of several solar thermal plants. The system will be able to make an analysis that assures a more efficient management of each plant and of the whole system. In the first part of this study, the features of the monitoring system that allows to monitor the operating parameters and to discover the issues before they actually become dangerous for the plant have been identified. The data collected in the different solar thermal systems realized in Italian jails have been analyzed. The results of these elaborations allowed us both to find out some anomalies of functioning of the plants, and to optimize the management of the whole plant in a more efficient way.展开更多
Umbrella-shaped assembly of cylindrical fins is optimized by adopting analytical method and taking dimensionless mean thermal resistance (MTR) as performance index. The optimal construct of umbrella-shaped assembly is...Umbrella-shaped assembly of cylindrical fins is optimized by adopting analytical method and taking dimensionless mean thermal resistance (MTR) as performance index. The optimal construct of umbrella-shaped assembly is obtained. The results show that the heat conductance performance of the assembly becomes ever worse with ever greater number of elemental cylindrical fins,the umbrella-shaped assembly reduces to cylindrical fin in some values of design parameters,and the diameters’ dependence on design parameters is weak for the optimized assembly. An equivalent thermal resistance defined based on entransy dissipation rate (EDR) reflects an average heat transfer effect of the assembly. The constructal design corresponding to the minimum EDR (or MTR) should be adopted for designing an assembly of fins in engineering at the limit safe condition.展开更多
基金Projects(51774054,51974050)supported by the National Natural Science Foundation of China。
文摘Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.
基金the Marine Research Center of Amirkabir University of Technology for financial support of thi sresearch
文摘A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefbre, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.
文摘The energy utilization consistency method in process integration extracts the key component of process energy utilization, and simplifies the procedure of process analysis and integration. The method allows the conversion of the total process energy integration into a synthesis problem of a pseudo-heat exchanger network. The advantages of using the energy utilization consistency and the pseudo-temperature methods are presented by two examples of integration of large-scale complex processes. The improved genetic algorithm is proved to be an effective tool in the retrofitting procedures.
基金Supported by the Program of Introduction of Talents of Discipline to Universities(B06006)
文摘A novel heat-integrated distillation scheme on pilot scale for producing C5 foaming agent, a mixture of isopentane and pentane in a certain proportion, was proposed with the aid of process simulation. Compared with the conventional distillation scheme, C5 foaming agent was directly separated at the top of the original isopentane or pentane column in the novel scheme, instead of first refining the two isomerides to high purities and then mixing them into final products. This improvement reduced the difficulty of the separation and avoided meaningless exergy loss caused by re-mixing, which finally contributed to an energy-efficient design by a big margin. Moreover, the column grand composite curves(CGCCs)were used to modify all distillation columns, indicating that there is potential to improve the energy efficiency further. Therefore, double-effect, or heat-integrated distillation was also adopted. Energy and exergy analyses were then conducted to evaluate the effectiveness of the proposed scheme for the purpose of energy saving. The simulation results of the conventional distillation scheme were in agreement with its on-site counterpart. Analyses showed that the novel heat-integrated scheme reduced hot utility by 27.12%,, cold utility by 24.49%,, and total exergy loss by 23.95%,.
基金the National Natural Science Foundation of China(Grant No.60576047)
文摘A novel continuous-flow PCR chip adopting self-heating, passive-cooling mode to realize the DNA fragments amplification was presented. Using the ANSYS finite element analysis, the temperature distribution of the chip is simulated and analyzed.The optimal size of the chip is 30×22 mm2, the roundabout micro-channel is the 90 μm width, 40 μm depth. Two micro-heater with the nickel-chrome alloy material film are formed on the side of silicon belonging to denaturation and renaturation zones needed for PCR reaction, and two adiabatic structures with groove on side of silicon by anisotropy etching. By the mode of heating local zones at single side, three wider constant temperature zones could be formed, which are 60 ℃,72 ℃,95 ℃ and suitable for PCR,and the temperature-difference could be restricted in less than 5 ℃.
文摘This paper describes how to achieve an efficient design and management of a tele-monitoring system of several solar thermal plants. The system will be able to make an analysis that assures a more efficient management of each plant and of the whole system. In the first part of this study, the features of the monitoring system that allows to monitor the operating parameters and to discover the issues before they actually become dangerous for the plant have been identified. The data collected in the different solar thermal systems realized in Italian jails have been analyzed. The results of these elaborations allowed us both to find out some anomalies of functioning of the plants, and to optimize the management of the whole plant in a more efficient way.
基金supported by the National Natural Science Foundation of China (Grant No.10905093)the Program for New Century Excellent Talents in University of China (Grant No.NCET-04-1006)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.200136)
文摘Umbrella-shaped assembly of cylindrical fins is optimized by adopting analytical method and taking dimensionless mean thermal resistance (MTR) as performance index. The optimal construct of umbrella-shaped assembly is obtained. The results show that the heat conductance performance of the assembly becomes ever worse with ever greater number of elemental cylindrical fins,the umbrella-shaped assembly reduces to cylindrical fin in some values of design parameters,and the diameters’ dependence on design parameters is weak for the optimized assembly. An equivalent thermal resistance defined based on entransy dissipation rate (EDR) reflects an average heat transfer effect of the assembly. The constructal design corresponding to the minimum EDR (or MTR) should be adopted for designing an assembly of fins in engineering at the limit safe condition.