Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC)....Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.展开更多
文摘Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.