A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution ...A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy,and N2 adsorption-desorption were used to characterize the crystalline phase,morphology,particle size,chemical composition,and surface area of the WO3 samples.The formation of hexagonal(h-WO3) and monoclinic(m-WO3) crystal structures of WO3 at different temperatures or different times was confirmed by XRD.m-WO3 is formed at 600 ℃,while m-WO3 starts to transform into h-WO3 at 800℃.However,h-WO3,which forms at 800℃,may transform into m-WO3 by increasing the calcination temperature to 1000℃.SEM results indicate that m-WO3 particles exhibit a bulky shape with heavy aggregates,while h-WO3 particles exhibit a rod-like shape.Moreover,m-WO3 crystals are sporadically patched on the surface of the h-WO3 rod-like particles,resulting in the exposure of both m-WO3 and h-WO3 on the surface.It is observed that the monoclinic phase(m-WO3)/hexagonal phase(h-WO3) junction was fabricated by tuning the calcination temperature and calcination time.The relative ratios between m-WO3 and h-WO3 in the phase junction can readily be tailored by control of the calcination time.The photocatalytic activities of WO3 with different crystalline phases were evaluated by the photocatalytic degradation of rhodamine B as a model pollutant.A higher photocatalytic activity was observed in the WO3 sample with the m-WO3/h-WO3junction as compared with the sample with only m-WO3.The improvement of photocatalytic activity can be attributed to the reduction of the electron-hole recombination rate owing to the formation of the phase junction,whose presence has been confirmed by HRTEM and photoluminescence spectra.展开更多
Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent...Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent.展开更多
The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane (DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The res...The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane (DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The results show that ABS/DBDPE/Sb2O3 has the similar flammability parameters and thermal composition curves to ABS/DBDPO/Sb2O3. It suggests that DBDPE/Sb2O3 has the similar flame retardant behavior to DBDPO/Sb2O3. The heat release rate (HRR) and the effect heat combustion (EHC) curves of polymers flame retarded by DBDPE/Sb2O3 all decrease, but the mass loss rate (MLR) curve slightly increase. It shows that the decrease of HRR is not due to the increase of char formation ratio but the generation of incombustible gases. The major flame retardant mechanism of DBDPE/Sb2O3 is gas phase flame retardant mechanism. Increasing content of Sb2O3 in DBDPE/Sb2O3 can improve the flame retardant property and thermal stability of acrylonitrile butadiene styrene. Sb2O3 has a good synergistic effect with DBDPE.展开更多
To obtain the phase transformation latent heat corresponding to different cooling rates with low test workload and cost,the Newton thermal analysis method and the improved Newtonian thermal analysis method were discus...To obtain the phase transformation latent heat corresponding to different cooling rates with low test workload and cost,the Newton thermal analysis method and the improved Newtonian thermal analysis method were discussed based on the cooling curve obtained in the end-quench test.The validity of two methods was given by the latent heat calculation of 45^(#) steel.The results show that the relative error of latent heat is 5.20%through the improved Newtonian thermal analysis method,which is more accurate than the Newtonian thermal analysis method.Furthermore,the latent heat release of phase transformation of the self-designed CSU-A1 powder metallurgy nickel-based superalloy increases from 4.3 to 12.29 J/g when the cooling rate decreases from 50.15 to 33.40℃/min,because there is more sufficient time for the alloy microstructure to complete the phase transformation process when the cooling rate is smaller.展开更多
Nd-F species in NdF3-LiF melts were studied using cryoscopic method.Liquidus temperatures of melts of various compositions were determined by differential thermal analysis(DTA).Based on the different model calculation...Nd-F species in NdF3-LiF melts were studied using cryoscopic method.Liquidus temperatures of melts of various compositions were determined by differential thermal analysis(DTA).Based on the different model calculations,NdF4- was identified as the most likely Nd-F entity in the melts in which the mole fraction of NdF3 was lower than 20%,considering only one single Nd species in the melt,and which was formed in accordance with Temkin model or Flood model.Then,activities of different components in the melts were researched.The results show that activity of LiF decreases,and that of NdF3 increases with increasing the mole fraction of NdF3.The value of activity coefficient of NdF3 is higher than 1,and that of LiF is lower than 1.展开更多
Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of th...Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.展开更多
基金supported by the National Natural Science Foundation of China (21573101)the Liaoning Provincial Natural Science Foundation(2014020107)+2 种基金the Program for Liaoning Excellent Talents in University (LJQ2014041)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ([2013]1792)the Opening Project of Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CAS,the Opening Project of State Key Laboratory of Catalysis, DICP, CAS (N-09-06)~~
文摘A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate.X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy,and N2 adsorption-desorption were used to characterize the crystalline phase,morphology,particle size,chemical composition,and surface area of the WO3 samples.The formation of hexagonal(h-WO3) and monoclinic(m-WO3) crystal structures of WO3 at different temperatures or different times was confirmed by XRD.m-WO3 is formed at 600 ℃,while m-WO3 starts to transform into h-WO3 at 800℃.However,h-WO3,which forms at 800℃,may transform into m-WO3 by increasing the calcination temperature to 1000℃.SEM results indicate that m-WO3 particles exhibit a bulky shape with heavy aggregates,while h-WO3 particles exhibit a rod-like shape.Moreover,m-WO3 crystals are sporadically patched on the surface of the h-WO3 rod-like particles,resulting in the exposure of both m-WO3 and h-WO3 on the surface.It is observed that the monoclinic phase(m-WO3)/hexagonal phase(h-WO3) junction was fabricated by tuning the calcination temperature and calcination time.The relative ratios between m-WO3 and h-WO3 in the phase junction can readily be tailored by control of the calcination time.The photocatalytic activities of WO3 with different crystalline phases were evaluated by the photocatalytic degradation of rhodamine B as a model pollutant.A higher photocatalytic activity was observed in the WO3 sample with the m-WO3/h-WO3junction as compared with the sample with only m-WO3.The improvement of photocatalytic activity can be attributed to the reduction of the electron-hole recombination rate owing to the formation of the phase junction,whose presence has been confirmed by HRTEM and photoluminescence spectra.
基金Supported by the National Natural Science Foundation of China (No.20236030).
文摘Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent.
基金Project(20574020) supported by the National Natural Science Foundation of China
文摘The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane (DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The results show that ABS/DBDPE/Sb2O3 has the similar flammability parameters and thermal composition curves to ABS/DBDPO/Sb2O3. It suggests that DBDPE/Sb2O3 has the similar flame retardant behavior to DBDPO/Sb2O3. The heat release rate (HRR) and the effect heat combustion (EHC) curves of polymers flame retarded by DBDPE/Sb2O3 all decrease, but the mass loss rate (MLR) curve slightly increase. It shows that the decrease of HRR is not due to the increase of char formation ratio but the generation of incombustible gases. The major flame retardant mechanism of DBDPE/Sb2O3 is gas phase flame retardant mechanism. Increasing content of Sb2O3 in DBDPE/Sb2O3 can improve the flame retardant property and thermal stability of acrylonitrile butadiene styrene. Sb2O3 has a good synergistic effect with DBDPE.
基金the financial supports from the National Key Research and Development Program of China(No.2016YFB0700300)the Postgraduate Independent Exploration and Innovation Project of Central South University,China(No.2019zzts262)。
文摘To obtain the phase transformation latent heat corresponding to different cooling rates with low test workload and cost,the Newton thermal analysis method and the improved Newtonian thermal analysis method were discussed based on the cooling curve obtained in the end-quench test.The validity of two methods was given by the latent heat calculation of 45^(#) steel.The results show that the relative error of latent heat is 5.20%through the improved Newtonian thermal analysis method,which is more accurate than the Newtonian thermal analysis method.Furthermore,the latent heat release of phase transformation of the self-designed CSU-A1 powder metallurgy nickel-based superalloy increases from 4.3 to 12.29 J/g when the cooling rate decreases from 50.15 to 33.40℃/min,because there is more sufficient time for the alloy microstructure to complete the phase transformation process when the cooling rate is smaller.
基金Project(51004034)supported by the National Natural Science Foundation of ChinaProject(N090302009)supported by the Fundamental Research Funds for the Central Universities,China
文摘Nd-F species in NdF3-LiF melts were studied using cryoscopic method.Liquidus temperatures of melts of various compositions were determined by differential thermal analysis(DTA).Based on the different model calculations,NdF4- was identified as the most likely Nd-F entity in the melts in which the mole fraction of NdF3 was lower than 20%,considering only one single Nd species in the melt,and which was formed in accordance with Temkin model or Flood model.Then,activities of different components in the melts were researched.The results show that activity of LiF decreases,and that of NdF3 increases with increasing the mole fraction of NdF3.The value of activity coefficient of NdF3 is higher than 1,and that of LiF is lower than 1.
文摘Pyrolysis of polytrimethylene terephthalate(PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates.At 400℃,pyrolysis of molecular chain could occur,only 13 pyrolysates could be identified.The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃.At 550℃-750℃,pyrolysis of molecular chain could completely take place,46 pyrolysates could be found.As the temperature increases,the compositions of pyrolysate are distinctly increased.Several compounds,especially benzoic acid,monopropenyl-p-phthalate,2-propenyl benzoate,di-2-propenyl ester,1,4-benzenedicarboxylic acid,benzene,1,5-hexadiene,biphenyl and 1,3-propanediol dibenzoate could be formed.The thermal degradation mechanism,which is determined by structure and amount of the thermal decomposition products,are described.During pyrolysis of polytrimethylene terephthalate,polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain.The chain scissions are followed by the elimination reaction,linkage action and secondary reactions,which bring about a variety fragment.