This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelti...According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.展开更多
A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Nume...A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.展开更多
This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice ger...This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice germplasm resource project team in Jiangsu Academy of Agricultural Sciences, to analyze the differences in RVA eigenvalues and starch crystal thermodynamic properties using differential scanning calorimeter (DSC). The result showed that three rice materials with high contents of resistant starch exhibited low breakdown viscosity and high setback vis- cosity; three rice materials with low contents of resistant starch exhibited high breakdown viscosity and low setback viscosity. Significant differences were observed in RVA eigenvalues and starch crystal thermodynamic properties among rice germplasms with different contents of resistant starch, which provided new indices for breeding functional rice cultivars with high resistant starch content.展开更多
A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft...A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
The mercury sulfidation experiments were conducted in the pH range from 1 to 13. The results show that Hg(II) reacted with equimolar S( II ) has the lowest remained Hg(II ) concentration (9.7 μg/L) at pH 1.0 ...The mercury sulfidation experiments were conducted in the pH range from 1 to 13. The results show that Hg(II) reacted with equimolar S( II ) has the lowest remained Hg(II ) concentration (9.7 μg/L) at pH 1.0 and the highest remained concentration (940.8μg/L) at pH 13.0. Meanwhile, the changes of pH values were monitored exactly, which reveal that solution pH values change when mixing the same pH value solutions of HgCI2 and Na2S. In order to explain the phenomena and determine the reaction paths of Hg(II) reacting with S( II ) in the solution, the concerned thermodynamics was studied. Species of S( II )-H2O system and Hg(II)-H2O system at different pH values were calculated, and then the species distribution diagrams of S(II)-H2O system, Hg( II )-H2O system and Hg( II )-Cl-OH--H20 system were drawn. Combining the experimental data and thermodynamic calculation, the mechanism of Hg(II) reacting with S(II) was deduced. The results indicate that different species of S( II ) and Hg(II) have the diverse reaction paths to form HgS precipitate at different pH values and the standard Gibbs free energies change (△tGm^⊙) of those equations are also calculated, which can provide a guidance for mercury-containing wastewater treatment with Na2S.展开更多
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金Project (50904027) supported by the National Natural Science Foundation of ChinaProject (2013BAB03B05) supported by the National Key Technology R&D Program of China+1 种基金Project (20133BCB23018) supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject (2012ZBAB206002) supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.
基金Project(51276203)supported by the National Natural Science Foundation of China
文摘A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(11)1020]~~
文摘This study aimed to compare starch properties among rice germplasms with different contents of resistant starch. Rice germplasms with significant differ- ences in resistant starch content were screened by the rice germplasm resource project team in Jiangsu Academy of Agricultural Sciences, to analyze the differences in RVA eigenvalues and starch crystal thermodynamic properties using differential scanning calorimeter (DSC). The result showed that three rice materials with high contents of resistant starch exhibited low breakdown viscosity and high setback vis- cosity; three rice materials with low contents of resistant starch exhibited high breakdown viscosity and low setback viscosity. Significant differences were observed in RVA eigenvalues and starch crystal thermodynamic properties among rice germplasms with different contents of resistant starch, which provided new indices for breeding functional rice cultivars with high resistant starch content.
文摘A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
基金Project(50925417) supported by China National Funds for Distinguished Young ScientistsProject(50830301) supported by the Key Project of the National Natural Science Foundation of China+2 种基金Project(308019) supported by the Key Science and Technical Project of Ministry of Science and Technology of ChinaProject(2007BAC25B01) supported by the National Key Project of Science and Technical Supporting Programs Funded by Ministry of Science and Technology of China during the 11th Five-Year PlanProject(08JJ3020) supported by the Natural Science Foundation of Hunan Province, China
文摘The mercury sulfidation experiments were conducted in the pH range from 1 to 13. The results show that Hg(II) reacted with equimolar S( II ) has the lowest remained Hg(II ) concentration (9.7 μg/L) at pH 1.0 and the highest remained concentration (940.8μg/L) at pH 13.0. Meanwhile, the changes of pH values were monitored exactly, which reveal that solution pH values change when mixing the same pH value solutions of HgCI2 and Na2S. In order to explain the phenomena and determine the reaction paths of Hg(II) reacting with S( II ) in the solution, the concerned thermodynamics was studied. Species of S( II )-H2O system and Hg(II)-H2O system at different pH values were calculated, and then the species distribution diagrams of S(II)-H2O system, Hg( II )-H2O system and Hg( II )-Cl-OH--H20 system were drawn. Combining the experimental data and thermodynamic calculation, the mechanism of Hg(II) reacting with S(II) was deduced. The results indicate that different species of S( II ) and Hg(II) have the diverse reaction paths to form HgS precipitate at different pH values and the standard Gibbs free energies change (△tGm^⊙) of those equations are also calculated, which can provide a guidance for mercury-containing wastewater treatment with Na2S.