This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop acro...This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.展开更多
The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program...The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A ), the Poisson's ratio (v), the Griuneisen parameter (γ), the Debye temperature θD on pressure and temperature are also successfully obtained.展开更多
The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and ther...The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and thermal expansion coefficient have a power\|law dependence on the radial coordinate, explicit exact solution is obtained. For the degenerated case, i.e. when the cylinder is homogeneous and isotropic, no stresses will occur provided it is subjected to a uniform temperature. Numerical results are finally given and some important inclusions are obtained.展开更多
A simplified dual-pressure ammonia-water absorption power cycle(DPAPC-a) using low grade energy resources is presented and analyzed.This cycle uses turbine exhaust heat to distill the basic solution for desorption.The...A simplified dual-pressure ammonia-water absorption power cycle(DPAPC-a) using low grade energy resources is presented and analyzed.This cycle uses turbine exhaust heat to distill the basic solution for desorption.The structure of the cycle is simple which comprises evaporator,turbine,regenerator(desorber),absorber,pump and throttle valves for both diluted solution and vapor.And it is of high efficiency,because the working medium has large temperature difference in evaporation and small temperature difference in absorptive condensation,which can match the sensible exothermal heat resource and the cooling water simultaneously.Orthogonal calculation was made to investigate the influence of the working concentration,the basic concentration and the circulation multiple on the cycle performance,with 85-110 ℃ heat resource and 20-32 ℃ cooling water.An optimum scheme was given in the condition of 110 ℃ sensitive heat resource and 20 ℃ cooling water,with the working concentration of 0.6,basic concentration of 0.385,and circulation multiple of 5.The thermal efficiency and the power recovery efficiency are 8.06 % and 6.66%,respectively.The power recovery efficiency of the DPAPC-a is 28.8% higher than that of the steam Rankine cycle(SRC) and 12.7% higher than that of ORC(R134a) under the optimized situation.展开更多
We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low...We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.展开更多
Environmental protection challenges thermal power construction from respects of the reform of investment system, main industrial policies and plant site selection in China. Pollution control of thermal power plants is...Environmental protection challenges thermal power construction from respects of the reform of investment system, main industrial policies and plant site selection in China. Pollution control of thermal power plants is analyzed from the angles of increasingly stringent laws, regulations and standards as well as approval procedures of thermal power projects. The paper points out emphatically that the plant site selection of a thermal power project must satisfy various requirements of rules and regulations, development programme and environmental ftmctions, etc. Different criteria of dust, SO2, NOx and other pollutants control are enumerated speeially.展开更多
An approach was presented to intensify the mixing process. Firstly, a novel concept, the dissipation of mass transfer ability(DMA) associated with convective mass transfer, was defined via an analogy to the heat-work ...An approach was presented to intensify the mixing process. Firstly, a novel concept, the dissipation of mass transfer ability(DMA) associated with convective mass transfer, was defined via an analogy to the heat-work conversion. Accordingly, the focus on mass transfer enhancement can be shifted to seek the extremum of the DMA of the system. To this end, an optimization principle was proposed. A mathematical model was then developed to formulate the optimization into a variational problem. Subsequently, the intensification of the mixing process for a gas mixture in a micro-tube was provided to demonstrate the proposed principle. In the demonstration example, an optimized velocity field was obtained in which the mixing ability was improved, i.e., the mixing process should be intensified by adjusting the velocity field in related equipment. Therefore, a specific procedure was provided to produce a mixer with geometric irregularities associated with an ideal velocity.展开更多
The free electron gas in a uniform magnetic field at low temperature is restudied. The grand partition function previously obtained by Landau's quantitative calculation contains three parts, which are all approximate...The free electron gas in a uniform magnetic field at low temperature is restudied. The grand partition function previously obtained by Landau's quantitative calculation contains three parts, which are all approximate. An improved calculation is presented, in which two of the three parts are obtained in exact forms. A simple remedy for Landau and Lifshitz's qualitative calculation in the textbook is also given, which turns the qualitative result into the same one as obtained by the improved quantitative calculation. The chemical potential is solved approximately and the thermodynamic quantities are caiculated explicitly in both a weak field and a strong field. The thermodynamic quantities in a strong field obtained here contain both non-oscillating and oscillating corrections to the corresponding results derived from Landau's grand partition function. In particular, Landau's grand partition function is not sufficiently accurate to yield our nonzero results for the specific heat and the entropy. An error in the Laplace-transform method for the problem is corrected. The results previously obtained by this method are also improved.展开更多
A comparison on subcritical and transcritical organic Rankine cycle(ORC) system with a heat source of 110 ℃ geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of ...A comparison on subcritical and transcritical organic Rankine cycle(ORC) system with a heat source of 110 ℃ geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of the heat transfer coefficient(U) and the total heat exchange area(A)(UA values) were calculated for parametric optimization. Nine candidate working fluids were investigated and compared. Under the given conditions, transcritical systems have higher net power outputs than subcritical ones. The highest net power output of transcritical systems is 18.63 k W obtained by R218, and that of subcritical systems is 13.57 k W obtained by R600 a. Moreover, with the increase of evaporating pressure, the thermal and exergy efficiencies of transcritical systems increase at first and then decrease, but the efficiencies of subcritical ones increase. As a result, the efficiencies of transcritical systems cannot always outperform those of the subcritical ones. However, the subcritical systems have lower minimum UA values and lower expansion ratios than the transcritical ones at the maximum net power output. In addition, the transcritical cycles have higher expansion ratios than the subcritical ones at their maximum net power output.展开更多
Through the gauge field theory, we obtain the solution of the DBI-AdS black hole, In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function...Through the gauge field theory, we obtain the solution of the DBI-AdS black hole, In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole. The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function. With the thermodynamic relations, other thermodynamics are also obtained. The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes.展开更多
Steady-state model of a high-temperature solid oxide fuel cell (SOFC) is considered, which refers to constant chemical potentials of incoming hydrogen fuel and oxidant. Lowering of the cell voltage below its reversi...Steady-state model of a high-temperature solid oxide fuel cell (SOFC) is considered, which refers to constant chemical potentials of incoming hydrogen fuel and oxidant. Lowering of the cell voltage below its reversible value is attributed to polarizations and imperfect conversions of reactions. An imperfect power formula summarizes the effect of transport laws, irreversible polarizations and efficiency of power yield. Reversible electrochemical theory is extended to the case with dissipative chemical reactions; this case includes systems with incomplete conversions, characterized by "reduced affinities" and an idle run voltage. Efficiency drop is linked with thermodynamic and electrochemical irreversibilities expressed in terms of polarizations (activation, concentration and ohmic). Effect of incomplete conversions is modeled by assuming that substrates can be remained after the reaction and that side reactions may occur. Optimum and feasibility conditions are discussed for basic input parameters of the cell. Calculations of maximum power show that the data differ for power generated and consumed and depend on current intensity, number of mass transfer units, polarizations, electrode surface area, average chemical rate, etc.. These data provide bounds for SOFC energy generators, which are more exact and informative than reversible bounds for electrochemical transformation.展开更多
Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this p...Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.展开更多
The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained...The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered.展开更多
基金The National Natural Science Foundation of China(No.10962008,51061015)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings.
基金National Natural Science Foundation of China under Grant No.10576020
文摘The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A ), the Poisson's ratio (v), the Griuneisen parameter (γ), the Debye temperature θD on pressure and temperature are also successfully obtained.
文摘The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and thermal expansion coefficient have a power\|law dependence on the radial coordinate, explicit exact solution is obtained. For the degenerated case, i.e. when the cylinder is homogeneous and isotropic, no stresses will occur provided it is subjected to a uniform temperature. Numerical results are finally given and some important inclusions are obtained.
基金Project(50976022) supported by the National Natural Science Foundation of ChinaProject(BY2011155) supported by Science and Technology Innovation and Transformation of Achievements of Special Fund of Jiangsu Province, China
文摘A simplified dual-pressure ammonia-water absorption power cycle(DPAPC-a) using low grade energy resources is presented and analyzed.This cycle uses turbine exhaust heat to distill the basic solution for desorption.The structure of the cycle is simple which comprises evaporator,turbine,regenerator(desorber),absorber,pump and throttle valves for both diluted solution and vapor.And it is of high efficiency,because the working medium has large temperature difference in evaporation and small temperature difference in absorptive condensation,which can match the sensible exothermal heat resource and the cooling water simultaneously.Orthogonal calculation was made to investigate the influence of the working concentration,the basic concentration and the circulation multiple on the cycle performance,with 85-110 ℃ heat resource and 20-32 ℃ cooling water.An optimum scheme was given in the condition of 110 ℃ sensitive heat resource and 20 ℃ cooling water,with the working concentration of 0.6,basic concentration of 0.385,and circulation multiple of 5.The thermal efficiency and the power recovery efficiency are 8.06 % and 6.66%,respectively.The power recovery efficiency of the DPAPC-a is 28.8% higher than that of the steam Rankine cycle(SRC) and 12.7% higher than that of ORC(R134a) under the optimized situation.
文摘We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.
文摘Environmental protection challenges thermal power construction from respects of the reform of investment system, main industrial policies and plant site selection in China. Pollution control of thermal power plants is analyzed from the angles of increasingly stringent laws, regulations and standards as well as approval procedures of thermal power projects. The paper points out emphatically that the plant site selection of a thermal power project must satisfy various requirements of rules and regulations, development programme and environmental ftmctions, etc. Different criteria of dust, SO2, NOx and other pollutants control are enumerated speeially.
基金Supported by the National Basic Research Program of China("973" Program,No.2012CB720500)the National Natural Science Foundation of China(No.21176171)
文摘An approach was presented to intensify the mixing process. Firstly, a novel concept, the dissipation of mass transfer ability(DMA) associated with convective mass transfer, was defined via an analogy to the heat-work conversion. Accordingly, the focus on mass transfer enhancement can be shifted to seek the extremum of the DMA of the system. To this end, an optimization principle was proposed. A mathematical model was then developed to formulate the optimization into a variational problem. Subsequently, the intensification of the mixing process for a gas mixture in a micro-tube was provided to demonstrate the proposed principle. In the demonstration example, an optimized velocity field was obtained in which the mixing ability was improved, i.e., the mixing process should be intensified by adjusting the velocity field in related equipment. Therefore, a specific procedure was provided to produce a mixer with geometric irregularities associated with an ideal velocity.
基金Supported by the National Natural Science Foundation of China under Grant No.10675174
文摘The free electron gas in a uniform magnetic field at low temperature is restudied. The grand partition function previously obtained by Landau's quantitative calculation contains three parts, which are all approximate. An improved calculation is presented, in which two of the three parts are obtained in exact forms. A simple remedy for Landau and Lifshitz's qualitative calculation in the textbook is also given, which turns the qualitative result into the same one as obtained by the improved quantitative calculation. The chemical potential is solved approximately and the thermodynamic quantities are caiculated explicitly in both a weak field and a strong field. The thermodynamic quantities in a strong field obtained here contain both non-oscillating and oscillating corrections to the corresponding results derived from Landau's grand partition function. In particular, Landau's grand partition function is not sufficiently accurate to yield our nonzero results for the specific heat and the entropy. An error in the Laplace-transform method for the problem is corrected. The results previously obtained by this method are also improved.
基金Project(2012AA053001) supported by the National High Technology Research and Development Program of China
文摘A comparison on subcritical and transcritical organic Rankine cycle(ORC) system with a heat source of 110 ℃ geothermal water was presented. The net power output, thermal and exergy efficiencies and the products of the heat transfer coefficient(U) and the total heat exchange area(A)(UA values) were calculated for parametric optimization. Nine candidate working fluids were investigated and compared. Under the given conditions, transcritical systems have higher net power outputs than subcritical ones. The highest net power output of transcritical systems is 18.63 k W obtained by R218, and that of subcritical systems is 13.57 k W obtained by R600 a. Moreover, with the increase of evaporating pressure, the thermal and exergy efficiencies of transcritical systems increase at first and then decrease, but the efficiencies of subcritical ones increase. As a result, the efficiencies of transcritical systems cannot always outperform those of the subcritical ones. However, the subcritical systems have lower minimum UA values and lower expansion ratios than the transcritical ones at the maximum net power output. In addition, the transcritical cycles have higher expansion ratios than the subcritical ones at their maximum net power output.
文摘Through the gauge field theory, we obtain the solution of the DBI-AdS black hole, In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole. The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function. With the thermodynamic relations, other thermodynamics are also obtained. The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes.
文摘Steady-state model of a high-temperature solid oxide fuel cell (SOFC) is considered, which refers to constant chemical potentials of incoming hydrogen fuel and oxidant. Lowering of the cell voltage below its reversible value is attributed to polarizations and imperfect conversions of reactions. An imperfect power formula summarizes the effect of transport laws, irreversible polarizations and efficiency of power yield. Reversible electrochemical theory is extended to the case with dissipative chemical reactions; this case includes systems with incomplete conversions, characterized by "reduced affinities" and an idle run voltage. Efficiency drop is linked with thermodynamic and electrochemical irreversibilities expressed in terms of polarizations (activation, concentration and ohmic). Effect of incomplete conversions is modeled by assuming that substrates can be remained after the reaction and that side reactions may occur. Optimum and feasibility conditions are discussed for basic input parameters of the cell. Calculations of maximum power show that the data differ for power generated and consumed and depend on current intensity, number of mass transfer units, polarizations, electrode surface area, average chemical rate, etc.. These data provide bounds for SOFC energy generators, which are more exact and informative than reversible bounds for electrochemical transformation.
基金supported by the Tsinghua University Initiative Scientific Research Program
文摘Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.51376101&51356001)
文摘The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered.