期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
活化络合物理论的热力学表达式的推导
1
作者 李强国 《荆州师专学报》 1992年第5期68-70,共3页
本文通过模拟经验平衡常数 K 与标准平衡常数 K°,标准吉氏自由能变化△G°,标准焓变△H°及标准熵变△S°等热力学关系,导出了理想溶液反应及理想气体反应的 ACT 热力学表达式.
关键词 活化络合物理论 热力学 ACT热力学表达式
全文增补中
一种体积物态方程物理基础的讨论 被引量:1
2
作者 李欣竹 吴强 《高压物理学报》 CAS CSCD 北大核心 2001年第2期155-160,共6页
对体积物态方程v -vc=(R/p) (h -hc)的物理基础进行了讨论。给出了该方程的一个统计力学形式证明 ,从而给出了方程中物质参数的微观定义 ,亦即给出了该方程的具体表达式。在R =R(p)假设下 ,给出了方程中物质参数的热力学表达式 ,通过分... 对体积物态方程v -vc=(R/p) (h -hc)的物理基础进行了讨论。给出了该方程的一个统计力学形式证明 ,从而给出了方程中物质参数的微观定义 ,亦即给出了该方程的具体表达式。在R =R(p)假设下 ,给出了方程中物质参数的热力学表达式 ,通过分析其与Debye理论下的对应态定律的一致性 ,证明了该假设的近似合理性 ,从而也就证明了该方程的成立并不受其建立时所依据的定压比热为常数这一过强条件的限制。进一步地 ,通过与物质参数热力学表达式常压实验值的比较 ,指出了单纯的R =R(p)假定存在一定的局限 ,该局限引起的偏差随温度的升高而增大 ,在常压下的高温区间 ,该偏差在 2 0 %左右。 展开更多
关键词 统计力学 固体物理 体积物态方程 热力学表达式
下载PDF
对物理化学中两个公式的异议 被引量:1
3
作者 牛家治 《淮北煤师院学报(自然科学版)》 2001年第4期77-79,82,共4页
对理想气体化学势的统计表达式及过渡态理论中速率常数的热力学表达式重新推导,其结果与所见教材中的有所不同,在此提出讨论.
关键词 化学势 标准态 速率常数 物理化学 理想气体 统计表达式 热力学表达式 过渡态
下载PDF
Effect of Spatial Dimension and External Potential on Joule-Thomson Coefficients of Ideal Bose Gases
4
作者 袁都奇 王参军 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第4期669-672,共4页
Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (3TC) for an ideal Bose gas are derived in n-... Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (3TC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s ≤ 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → Tc (Tc is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant △= [1 - y∏^ni=1(kT/εi)^1/tiГ(1/ti+1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, ε is the external field's energy), is obtained. The potential makes the JTC increase when △ 〉 0, on the contrary, it makes the JTC decrease when A 〈△. (iii) In the homogenous strong external potential, the JTC gets the maximum on the condition of kTεi〈〈1. 展开更多
关键词 ideal Bose gases Joule-Thomson coefficient spatial dimension external potential field
下载PDF
New Physical and Chemical Constants and Prospects of Its Use for the Explicit Expression of Thermodynamic Functions
5
作者 Vitaliy Malyshev Astra Turdukozhayeva 《Journal of Chemistry and Chemical Engineering》 2013年第5期468-482,共15页
Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level... Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level, thus providing them full visibility of and the ability to calculate the maximum entropy in the Boltzmann formula S∞ = R·InNA = 455.251 J/(mol.K). This value, when expressed in terms of fundamental constants, is itself a physical and chemical constants and mole monatomic ideal gas is unsurpassed in any studied temperature range. For complex substances this limit increases in direct proportion to their atomic. The existence of two limits entropy change--lower, equal to zero according to the third law of thermodynamics, and the top, equal to S∞, makes possible the explicit expression of the temperature dependence of the entropy in the form of an exponentialS=S∞exp[-5030.31p 2/5 /(M3/5T)](5/2)r e/s∞. rather than in the form of a logarithmic dependence of the infinite by the approximateformula Sakura-Tetrode with which this the dependence is almost identical in the studied temperature range (100-10,000 K), but not absurd negative entropy in the extrapolation formula Sakura-Tetrode absolute zero to the region and especially in the area of T → ∞where it turns S →∞. 展开更多
关键词 Boltzmann distribution THERMODYNAMICS ENTROPY heat capacity the probability.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部