Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanis...Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.展开更多
Residual stress continues to be important issues in shipbuilding. This paper demonstrates how the heat affected zone that results from welding could be identified nondestructively using MBN (magnetic Barkhausen noise...Residual stress continues to be important issues in shipbuilding. This paper demonstrates how the heat affected zone that results from welding could be identified nondestructively using MBN (magnetic Barkhausen noise) technique. A stress concentration region was created by placing a weld bead on a marine steel plate used in ship construction. MBN measurements were made on the back surface of the welded plate along the weld direction and perpendicular to it in a line that crosses the weld bead. The stress distribution as deduced from the MBN measurements was found to be anisotropic in the material of the heat affected zone. The heat induced anisotropy was completely eliminated by shot peening the HAZ material as revealed by MBN intensity. It was concluded that the directional MBN measurements could be used to characterize the induced anisotropy and hence assess the thermal residual stresses distribution near a localized stresses concentration regions imposed by welding.展开更多
基金Project(51905126) supported by the National Natural Science Foundation of ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.
文摘Residual stress continues to be important issues in shipbuilding. This paper demonstrates how the heat affected zone that results from welding could be identified nondestructively using MBN (magnetic Barkhausen noise) technique. A stress concentration region was created by placing a weld bead on a marine steel plate used in ship construction. MBN measurements were made on the back surface of the welded plate along the weld direction and perpendicular to it in a line that crosses the weld bead. The stress distribution as deduced from the MBN measurements was found to be anisotropic in the material of the heat affected zone. The heat induced anisotropy was completely eliminated by shot peening the HAZ material as revealed by MBN intensity. It was concluded that the directional MBN measurements could be used to characterize the induced anisotropy and hence assess the thermal residual stresses distribution near a localized stresses concentration regions imposed by welding.