The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, express...The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.展开更多
Understanding the interaction between a fluid and a solid phase is of fundamental importance to the design of an adsorption process.Because the heat effects associated with adsorption are comparatively large,the as-su...Understanding the interaction between a fluid and a solid phase is of fundamental importance to the design of an adsorption process.Because the heat effects associated with adsorption are comparatively large,the as-sumption of isothermal behavior is a valid approximation only when uptake rates are relatively slow.In this article,we propose to determine when it is needed to choose the isothermal or non-isothermal assumption according to two physical parametersα(ratio convection/capacity) andβ(quantity of energy/capacity) .The proposed problem is solved by a mathematical method in the Laplace domain.Whenα→∞(infinitely high heat transfer coefficient) or β→0(infinitely large heat capacity) ,the limiting case is isothermal.When the diffusion is rapid(α10) the kinetics of sorption is controlled entirely by heat transfer.If the adsorption process is to be used as a heat pump,it shall be represented by an isotherm model withαandβas high as possible.展开更多
The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat...The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.展开更多
Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having ...Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.展开更多
The absorption-compression heat pump (ACHP) has been considered as an effective approach to recover and utilize low-grade heat sources. In the present study, the first and second law thermodynamic analyses of the AC...The absorption-compression heat pump (ACHP) has been considered as an effective approach to recover and utilize low-grade heat sources. In the present study, the first and second law thermodynamic analyses of the ACHP with NH3/H20 as working fluid were performed. Thermodynamic properties of each point and heat transfer rate of each component in the cycle under basic operation conditions were calculated from the first law analysis. Following the second law of thermodynamics, the entropy generation of each component and the total entropy generation of the system were obtained. The effect~ of the heating temperature, heat source temperature, and compression ratio on the coefficient of performance (COP) and the total entropy generation ( STot ) of the system were examined. The results show that the increase in COP corresponds to a decrease in STot, and vice versa; besides, for certain operating conditions, an optimum compression ratio in the NH~/H20 ACHP exists.展开更多
In this research, numerical simulation and experimental results of thermal stress due to an end-pumped Nd:YVO4 a-cut crystal with 0.5% Nd doping were compared. The findings demonstrate a good consistency with experim...In this research, numerical simulation and experimental results of thermal stress due to an end-pumped Nd:YVO4 a-cut crystal with 0.5% Nd doping were compared. The findings demonstrate a good consistency with experiment. As in this paper has been predicted, at the pumping power above 23 watt, thermal stress has been bigger than thermal facture limit and crystal has broken.展开更多
An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic tempera...An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.展开更多
文摘The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.
文摘Understanding the interaction between a fluid and a solid phase is of fundamental importance to the design of an adsorption process.Because the heat effects associated with adsorption are comparatively large,the as-sumption of isothermal behavior is a valid approximation only when uptake rates are relatively slow.In this article,we propose to determine when it is needed to choose the isothermal or non-isothermal assumption according to two physical parametersα(ratio convection/capacity) andβ(quantity of energy/capacity) .The proposed problem is solved by a mathematical method in the Laplace domain.Whenα→∞(infinitely high heat transfer coefficient) or β→0(infinitely large heat capacity) ,the limiting case is isothermal.When the diffusion is rapid(α10) the kinetics of sorption is controlled entirely by heat transfer.If the adsorption process is to be used as a heat pump,it shall be represented by an isotherm model withαandβas high as possible.
基金Project(2011-0021376) supported by Basic Science Program through the National Research Foundation (NRF) Funded by the Ministry of Education,Science and Technology of Korea
文摘The research goal is to develop a new solar water heater system(SWHS) that uses a solar bubble pump instead of an electric pump.The pump is powered by the steam produced from an evacuated tube collector.Therefore,heat could be transferred downward from the collector to a hot water storage tank.The designed system consists of two sets of heat-pipe evacuated tube collectors,a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level.Discharge heads of 1 and 5 m were tested.The bubble pump could operate at the collector temperature of about 90-100 ℃ and vapor gage pressure of 80-90 kPa.It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head.Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly,daily and long-term performance tests.The thermal performance of the proposed system is compared with conventional solar water heaters.The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account.And the former is a zero carbon system.
文摘Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.
基金National Key Technologies R&D Program of China(No. 2012BABZ︱2B01)National Natural Science Foundation of China(No. 51106161)Innovation Foundation of President of Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences(No. 0907r7)
文摘The absorption-compression heat pump (ACHP) has been considered as an effective approach to recover and utilize low-grade heat sources. In the present study, the first and second law thermodynamic analyses of the ACHP with NH3/H20 as working fluid were performed. Thermodynamic properties of each point and heat transfer rate of each component in the cycle under basic operation conditions were calculated from the first law analysis. Following the second law of thermodynamics, the entropy generation of each component and the total entropy generation of the system were obtained. The effect~ of the heating temperature, heat source temperature, and compression ratio on the coefficient of performance (COP) and the total entropy generation ( STot ) of the system were examined. The results show that the increase in COP corresponds to a decrease in STot, and vice versa; besides, for certain operating conditions, an optimum compression ratio in the NH~/H20 ACHP exists.
文摘In this research, numerical simulation and experimental results of thermal stress due to an end-pumped Nd:YVO4 a-cut crystal with 0.5% Nd doping were compared. The findings demonstrate a good consistency with experiment. As in this paper has been predicted, at the pumping power above 23 watt, thermal stress has been bigger than thermal facture limit and crystal has broken.
基金Project supported by the National Key Research and Development Program of China(No.2017YFE0125100)the National Natural Science Foundation of China(No.51876134)the Research Plan of Science and Technology of Tianjin City(No.18YDYGHZ00090),China
基金supported by the National Natural Science Foundation of China (Grant No. 51076147)
文摘An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.