Based on a simple model, we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of extemal fluctuations. The key to this theoretical advan...Based on a simple model, we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of extemal fluctuations. The key to this theoretical advance is that the correlation lengths of the thermal fluctuations become significantly long for nanoscale systems. This differs from macroscopic systems in which the thermal noises are usually treated as white noise. Our observation does not violate the second law of thermodynamics, since at the nanoscale, extra energy is required to keep the asymmetric structure against thermal fluctuations.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.10825520 and 11175230)the Shanghai Leading Academic Discipline Project (B111)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciencesthe Shanghai Supercomputer Center of China
文摘Based on a simple model, we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of extemal fluctuations. The key to this theoretical advance is that the correlation lengths of the thermal fluctuations become significantly long for nanoscale systems. This differs from macroscopic systems in which the thermal noises are usually treated as white noise. Our observation does not violate the second law of thermodynamics, since at the nanoscale, extra energy is required to keep the asymmetric structure against thermal fluctuations.