期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
TA15钛合金热加工工艺参数与抗拉强度定量关系的神经网络分析 被引量:5
1
作者 刘亚秀 刘雅芳 +1 位作者 姜艳梅 由伟 《稀有金属》 EI CAS CSCD 北大核心 2013年第6期876-882,共7页
设计了径向基函数型人工神经网络模型,研究TA15钛合金的抗拉强度与热加工工艺参数的关系。用“留一法”训练了神经网络模型并对它的预测性能进行了测试,散点图和统计学指标均表明,人工神经网络模型经过训练后,具有较高的预测精度和... 设计了径向基函数型人工神经网络模型,研究TA15钛合金的抗拉强度与热加工工艺参数的关系。用“留一法”训练了神经网络模型并对它的预测性能进行了测试,散点图和统计学指标均表明,人工神经网络模型经过训练后,具有较高的预测精度和可靠性。用训练好的神经网络模型预测了6个样本的抗拉强度,预测值与相应的实验测试值很接近,3个误差统计学指标的值分别为MSE=20.9,MRSE=2.11%.VOF=1.9895,这表明实验结果很好地验证了神经网络模型的计算结果,说明人工神经网络的预测结果是准确、可靠的。最后用神经网络模型分析了热加工工艺参数与抗拉强度间的定量关系,结果表明:加热温度在780~040℃之间时,随着加热温度r的升高,TA15钛合金的抗拉强度随之提高:加热温度为780℃时,抗拉强度为961.7MPa,当加热温度升到940℃时,抗拉强度提高到了978.3MPa;应变量在0.5~0.9范围时,随着应变量的增加,钛合金的抗拉强度也提高:应变量为0.5时,抗拉强度为973MPa,当应变量达到0.9时,抗拉强度增加到了1020MPa;应变速率在0.003—0.007s^-1范围内时,随着应变速率的增加,钛合金的抗拉强度也提高:应变速率为0.003s。时,抗拉强度为974MPa,当应变速率达到0.007s^-1时,抗拉强度增加到了986.5MPa。 展开更多
关键词 TA15钛合金 抗拉强度 热加工工艺参数 人工神经网络 定量影响
原文传递
Ti-B25钛合金热变形行为及加工图 被引量:5
2
作者 谭伟力 刘伟 +2 位作者 戚运莲 毛小南 王艺 《稀有金属与硬质合金》 CAS CSCD 北大核心 2019年第1期36-42,共7页
在Gleeble 3800型热力学模拟实验机上对Ti-B25钛合金进行高温热压缩实验,得到温度为800~1 000℃,应变速率为0.01~10 s^(-1)条件下的真应力-真应变数据。通过计算应变速率敏感指数m值、能量耗散率η值以及失稳系数ξ值,绘制不同真应变... 在Gleeble 3800型热力学模拟实验机上对Ti-B25钛合金进行高温热压缩实验,得到温度为800~1 000℃,应变速率为0.01~10 s^(-1)条件下的真应力-真应变数据。通过计算应变速率敏感指数m值、能量耗散率η值以及失稳系数ξ值,绘制不同真应变条件下的加工图,从而识别出对应真应变下的稳定变形参数区和失稳区,并获得Ti-B25钛合金在实验范围内的安全变形参数区间为温度900~1 000℃,应变速率0.01~0.2 s^(-1)。此外,通过微观组织分析发现,Ti-B25钛合金在低温高应变速率下呈现出的失稳方式是晶粒破碎以及明显的流变失稳现象,在低温低应变率下其两相组织中发生α相球化;在中温高应变速率呈现出的失稳方式是中部大变形区不均匀的局部塑性变形,在中温低应变率下则主要发生了动态再结晶现象。 展开更多
关键词 Ti-B25合金 热加工工艺参数 加工 微观组织
下载PDF
High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:4
3
作者 鲁世强 李鑫 +2 位作者 王克鲁 董显娟 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem... The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 展开更多
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization
下载PDF
大中央件盘件成形 被引量:2
4
作者 占立水 叶俊青 +1 位作者 夏春林 李艳英 《兵器装备工程学报》 CAS 北大核心 2018年第3期162-164,177,共4页
在变形温度600~850℃、应变速率10^(-3)~10^(-1)s^(-1)下,对TB6合金进行了拉伸实验,分析了热加工参数对流动应力的影响,获得了理想的TB6合金成形加工工艺参数。试验结果表明:采用实验方法所确定的超塑性热加工工艺参数,大中央件锻件成... 在变形温度600~850℃、应变速率10^(-3)~10^(-1)s^(-1)下,对TB6合金进行了拉伸实验,分析了热加工参数对流动应力的影响,获得了理想的TB6合金成形加工工艺参数。试验结果表明:采用实验方法所确定的超塑性热加工工艺参数,大中央件锻件成形品质良好,力学性能满足相关技术要求。 展开更多
关键词 TB6合金 中央件 热加工工艺参数 成形工艺
下载PDF
Influence of the Main Technological Variables of Cyclical Mechanic-Thermal Processing on the Strain Hardening of Steel Parts
5
作者 Eleno Alfonso Brindis Sanjeevkoemar Bissesar +1 位作者 Faizel Abdoel Wahid Francisco Tchiquendja Eleno 《Journal of Mechanics Engineering and Automation》 2016年第1期1-8,共8页
The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of ste... The main objective of the present work was to determine the influence of the most important technological variables of CMTP (cyclical mechanic-thermal processing) on the strain hardening in the surface layers of steel parts. For this, it was designed a full factorial plan at two levels of five independent variables that include the whole processing in two and three cycles, the cold-forming degree and force during the plastic deformation (burnishing), and the temperature and time at the given temperature during the aging. Each cycle is composed of plastic deformation at room temperature plus aging. As dependent variables, the degree and penetration depth of strain hardening were evaluated. Based on the appropriately used set of experimental data, it had been fitted an exponential model for each dependent variables and also a two-degree polynomial fitting of in-depth evolution of microhardness profile was obtained. The amount of cycles and the cold-forming degree are the technological variables of CMTP that influence the most on strain hardening, although other variables also are significant. The microhardness profile highlights that during the CMTP, the strain hardening decreases from the outer bound to the transition zone of the surface layers, where it disappears. 展开更多
关键词 Mechanic-thermal processing strain hardening surface layers microhardness.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部