Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries....Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries.Both the conditions with constant heat flux from boundaries to the airflow and the ones with constant boundary temperature were considered.The prediction capabilities of these analytical models were evaluated by using large eddy simulation(LES) for a hypothetical shaft.The results show that there are fairly good agreements between the predictions of the analytical models and the LES predictions in mass flow rate,vertical temperatures profile and pressure difference as well.Both the results of analytical models and LES show that the neutral plane could locate higher than one half of the shaft height when the upper opening area is identical with the lower opening area.Further,it is also shown that the analytical models perform better than KLOTE's model does in the mass flow rate prediction.展开更多
Tons of solid particles, like carbon, beryllium and tungsten with diameters of several to several hundreds microns, would be generated as dusts in vacuum vessel during operation of ITER, In accident scenarios, e.g., l...Tons of solid particles, like carbon, beryllium and tungsten with diameters of several to several hundreds microns, would be generated as dusts in vacuum vessel during operation of ITER, In accident scenarios, e.g., loss of vacuum accident, the potentially combustible dust particles can be suspended by the air ingress and entrained into the whole vessel, and impose a risk of dust explosions to the whole facility. Therefore, the mechanism of particle resuspension was investigated theoretically. A force balance approach and numerical fittings have been utilized to develop a semi-empirical particle resuspension model based on a group of particle resuspension experimental data. The model has been applied into a three-dimensional computational fluid dynamics code, GASFLOW. The model validation has been done by comparison of the numerical predictions about particle resuspension rates in given incoming flows against the corresponding experimental data. The comparisons have proved the validity of the developed model.展开更多
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2010DFA72740-03) supported by the National Key Technology Research and Development Program of China
文摘Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries.Both the conditions with constant heat flux from boundaries to the airflow and the ones with constant boundary temperature were considered.The prediction capabilities of these analytical models were evaluated by using large eddy simulation(LES) for a hypothetical shaft.The results show that there are fairly good agreements between the predictions of the analytical models and the LES predictions in mass flow rate,vertical temperatures profile and pressure difference as well.Both the results of analytical models and LES show that the neutral plane could locate higher than one half of the shaft height when the upper opening area is identical with the lower opening area.Further,it is also shown that the analytical models perform better than KLOTE's model does in the mass flow rate prediction.
文摘Tons of solid particles, like carbon, beryllium and tungsten with diameters of several to several hundreds microns, would be generated as dusts in vacuum vessel during operation of ITER, In accident scenarios, e.g., loss of vacuum accident, the potentially combustible dust particles can be suspended by the air ingress and entrained into the whole vessel, and impose a risk of dust explosions to the whole facility. Therefore, the mechanism of particle resuspension was investigated theoretically. A force balance approach and numerical fittings have been utilized to develop a semi-empirical particle resuspension model based on a group of particle resuspension experimental data. The model has been applied into a three-dimensional computational fluid dynamics code, GASFLOW. The model validation has been done by comparison of the numerical predictions about particle resuspension rates in given incoming flows against the corresponding experimental data. The comparisons have proved the validity of the developed model.