The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ...The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.展开更多
In this work we show that tending to thermal equilibrium in one system, at least in certain cases, is associated with the coherent dynamical evolution of this system in interaction with another identical system. The t...In this work we show that tending to thermal equilibrium in one system, at least in certain cases, is associated with the coherent dynamical evolution of this system in interaction with another identical system. The temperature varying effect with time is manifestly shown in our analyses.展开更多
The thermal decomposition of abietic acid in air was investigated under non-isothermal condition using thermogravimetric analysis-differential thermal analysis (TGA-DTA) technique with heating rates of 5, 10, 15 and...The thermal decomposition of abietic acid in air was investigated under non-isothermal condition using thermogravimetric analysis-differential thermal analysis (TGA-DTA) technique with heating rates of 5, 10, 15 and 25 K.min-~. The non-isothermal kinetic parameters were obtained via the analysis of the thermogravimetric and differential thermogravimetric (TG-DTG) curves by using Flynn-Wall-Ozawa method and Kissinger method. The thermal decomposition mechanism of abietic acid was studied with four integral methods (Satava-Sestak, MacCallum-Tanner, ordinary integral and Agrawal). The results show that the thermal decomposition mechanism is nu- cleation and growth, and the mechanism function is Avrami-Erofeev equation with n equates 1/2. The activation energy and the pre-exponential factor are 64.04 kJ.mol^-1 and 5.89×10^5 s^-1, respectively.展开更多
Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics metho...Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics methods and their numerical implementation have been developed in the last decades. This review summarizes the most significant development of mixed quantum-classical methods and their applications which mainly include the Liouville equa- tion, Ehrenfest mean-field, trajectory surface hopping, and multiple spawning methods. The recently developed quantum trajectory mean-field method that accounts for the decoherence corrections in a parameter-free fashion is discussed in more detail.展开更多
A chemical process may involve multiple adiabatic electronic states, and non-adiabatic couplings play an important role in the reaction mechanism. In this work, the effect of non-adiabatic couplings in the H+MgH;→Mg;...A chemical process may involve multiple adiabatic electronic states, and non-adiabatic couplings play an important role in the reaction mechanism. In this work, the effect of non-adiabatic couplings in the H+MgH;→Mg;+H;reaction are studied using the time-dependent wave packet method and trajectory surface hopping method. The calculated results show that the reaction follows a direct abstraction process when the non-adiabatic couplings are neglected. However, when non-adiabatic couplings are included in the calculations, a longlived excited state complex(MgH_(2)+)*can be formed during the reaction. These direct and complex-forming reaction pathways are revealed by trajectory surface hopping calculations.The non-adiabatic couplings induced complex-forming mechanism not only increases the reactivity but also has significant effect on the product vibrational state distribution.展开更多
Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools wit...Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools within the framework of MD propagation,further development for better performance is still possible.The alternative version of LF in the middle thermostat scheme(LFmiddle)achieves a higher order of accuracy and efficiency and maintains stable dynamics even with the integration time stepsize extended by several folds.In this work,we perform a benchmark test of the two integrators(LF and LF-middle)in extensive conventional and enhanced sampling simulations,aiming at quantifying the time-stepsizeinduced variations of global properties(e.g.,detailed potential energy terms)as well as of local observables(e.g.,free energy changes or bondlengths)in practical simulations of complex systems.The test set is composed of six chemically and biologically relevant systems,including the conformational change of dihedral flipping in the N-methylacetamide and an AT(AdenineThymine)tract,the intra-molecular proton transfer inside malonaldehyde,the binding free energy calculations of benzene and phenol targeting T4 lysozyme L99A,the hydroxyl bond variations in ethaline deep eutectic solvent,and the potential energy of the blue-light using flavin photoreceptor.It is observed that the time-step-induced error is smaller for the LFmiddle scheme.The outperformance of LF-middle over the conventional LF integrator is much more significant for global properties than local observables.Overall,the current work demonstrates that the LF-middle scheme should be preferably applied to obtain accurate thermodynamics in the simulation of practical chemical and biological systems.展开更多
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(...The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.展开更多
Nanosystems play an important role in many applications.Due to their complexity,it is challenging to accurately characterize their structure and properties.An important means to reach such a goal is computational simu...Nanosystems play an important role in many applications.Due to their complexity,it is challenging to accurately characterize their structure and properties.An important means to reach such a goal is computational simulation,which is grounded on ab initio electronic structure calculations.Low scaling and accurate electronic-structure algorithms have been developed in recent years.Especially,the efficiency of hybrid density functional calculations for periodic systems has been significantly improved.With electronic structure information,simulation methods can be developed to directly obtain experimentally comparable data.For example,scanning tunneling microscopy images can be effectively simulated with advanced algorithms.When the system we are interested in is strongly coupled to environment,such as the Kondo effect,solving the hierarchical equations of motion turns out to be an effective way of computational characterization.Furthermore,the first principles simulation on the excited state dynamics rapidly emerges in recent years,and nonadiabatic molecular dynamics method plays an important role.For nanosystem involved chemical processes,such as graphene growth,multiscale simulation methods should be developed to characterize their atomic details.In this review,we review some recent progresses in methodology development for computational characterization of nanosystems.Advanced algorithms and software are essential for us to better understand of the nanoworld.展开更多
In the present paper, we study effect of the long-range Coulomb interaction on the thermodynamic propertiesof graphene by renormalization group methods.Our calculations show that both the specific heat and the magneti...In the present paper, we study effect of the long-range Coulomb interaction on the thermodynamic propertiesof graphene by renormalization group methods.Our calculations show that both the specific heat and the magneticsusceptibility of the material behave differently from the Landau Fermi liquid.More precisely, we find that thesequantities are logarithmically suppressed with respect to its noninteracting counterpart when temperature is low.展开更多
The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,...The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.展开更多
In this work we propose a quantum trajectory approach to the powerful molecular dynamics simulation with surface hopping, from an insight that an effective "observation" is actually implied in the simulation through...In this work we propose a quantum trajectory approach to the powerful molecular dynamics simulation with surface hopping, from an insight that an effective "observation" is actually implied in the simulation through tracking the forces experienced, just like checking the meter's result in quantum measurement process. This treatment can build the nonadiabatic surface hopping on a physical foundation, instead of the usual fictitious and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.展开更多
基金Project(51374058)supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.
基金National Natural Science Foundation of China under Grant No.10775097the Specialized Research Fund for the Doctorial Progress of Higher Education(SRFDP)
文摘In this work we show that tending to thermal equilibrium in one system, at least in certain cases, is associated with the coherent dynamical evolution of this system in interaction with another identical system. The temperature varying effect with time is manifestly shown in our analyses.
基金Supported by the National'Natural Science Foundation of China (20976031, 31060102), the Natural Science Foundation of Guangxi Autonomous Region (2011GXNSFD018011,0991030, 2010GXNSFA013042), the Science and Technology Program Foundation of Wuzhou City (200901011), the Scientific and Technological Project of Guangxi (1099060-2), the Scientific Research Innovative Foundation of Doctor Candidate (105930901008).
文摘The thermal decomposition of abietic acid in air was investigated under non-isothermal condition using thermogravimetric analysis-differential thermal analysis (TGA-DTA) technique with heating rates of 5, 10, 15 and 25 K.min-~. The non-isothermal kinetic parameters were obtained via the analysis of the thermogravimetric and differential thermogravimetric (TG-DTG) curves by using Flynn-Wall-Ozawa method and Kissinger method. The thermal decomposition mechanism of abietic acid was studied with four integral methods (Satava-Sestak, MacCallum-Tanner, ordinary integral and Agrawal). The results show that the thermal decomposition mechanism is nu- cleation and growth, and the mechanism function is Avrami-Erofeev equation with n equates 1/2. The activation energy and the pre-exponential factor are 64.04 kJ.mol^-1 and 5.89×10^5 s^-1, respectively.
基金supported by the National Key R&D Program of China(No.2017YFB0203405)the National Natural Science Foundation of China(No.21421003)
文摘Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics methods and their numerical implementation have been developed in the last decades. This review summarizes the most significant development of mixed quantum-classical methods and their applications which mainly include the Liouville equa- tion, Ehrenfest mean-field, trajectory surface hopping, and multiple spawning methods. The recently developed quantum trajectory mean-field method that accounts for the decoherence corrections in a parameter-free fashion is discussed in more detail.
基金supported by the National Natural Science Foundation of China(No.11774043)。
文摘A chemical process may involve multiple adiabatic electronic states, and non-adiabatic couplings play an important role in the reaction mechanism. In this work, the effect of non-adiabatic couplings in the H+MgH;→Mg;+H;reaction are studied using the time-dependent wave packet method and trajectory surface hopping method. The calculated results show that the reaction follows a direct abstraction process when the non-adiabatic couplings are neglected. However, when non-adiabatic couplings are included in the calculations, a longlived excited state complex(MgH_(2)+)*can be formed during the reaction. These direct and complex-forming reaction pathways are revealed by trajectory surface hopping calculations.The non-adiabatic couplings induced complex-forming mechanism not only increases the reactivity but also has significant effect on the product vibrational state distribution.
基金supported by the National Natural Science Foundation of China(No.21961142017)the Ministry of Science and Technology of China(No.2017YFA0204901)。
文摘Accurate and efficient integration of the equations of motion is indispensable for molecular dynamics(MD)simulations.Despite the massive use of the conventional leapfrog(LF)integrator in modern computational tools within the framework of MD propagation,further development for better performance is still possible.The alternative version of LF in the middle thermostat scheme(LFmiddle)achieves a higher order of accuracy and efficiency and maintains stable dynamics even with the integration time stepsize extended by several folds.In this work,we perform a benchmark test of the two integrators(LF and LF-middle)in extensive conventional and enhanced sampling simulations,aiming at quantifying the time-stepsizeinduced variations of global properties(e.g.,detailed potential energy terms)as well as of local observables(e.g.,free energy changes or bondlengths)in practical simulations of complex systems.The test set is composed of six chemically and biologically relevant systems,including the conformational change of dihedral flipping in the N-methylacetamide and an AT(AdenineThymine)tract,the intra-molecular proton transfer inside malonaldehyde,the binding free energy calculations of benzene and phenol targeting T4 lysozyme L99A,the hydroxyl bond variations in ethaline deep eutectic solvent,and the potential energy of the blue-light using flavin photoreceptor.It is observed that the time-step-induced error is smaller for the LFmiddle scheme.The outperformance of LF-middle over the conventional LF integrator is much more significant for global properties than local observables.Overall,the current work demonstrates that the LF-middle scheme should be preferably applied to obtain accurate thermodynamics in the simulation of practical chemical and biological systems.
基金Supported by the National Natural Science Foundation of China (20876042) Program of Shanghai Subject Chief Scientist (10XD1401500) Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.
基金supported by the Ministry of Science and Technology(No.2016YFA0200604)。
文摘Nanosystems play an important role in many applications.Due to their complexity,it is challenging to accurately characterize their structure and properties.An important means to reach such a goal is computational simulation,which is grounded on ab initio electronic structure calculations.Low scaling and accurate electronic-structure algorithms have been developed in recent years.Especially,the efficiency of hybrid density functional calculations for periodic systems has been significantly improved.With electronic structure information,simulation methods can be developed to directly obtain experimentally comparable data.For example,scanning tunneling microscopy images can be effectively simulated with advanced algorithms.When the system we are interested in is strongly coupled to environment,such as the Kondo effect,solving the hierarchical equations of motion turns out to be an effective way of computational characterization.Furthermore,the first principles simulation on the excited state dynamics rapidly emerges in recent years,and nonadiabatic molecular dynamics method plays an important role.For nanosystem involved chemical processes,such as graphene growth,multiscale simulation methods should be developed to characterize their atomic details.In this review,we review some recent progresses in methodology development for computational characterization of nanosystems.Advanced algorithms and software are essential for us to better understand of the nanoworld.
基金Supported by the Chinese National Science Foundation under Grant No.10874003 by Ministry of Science and Technology of China under Grant No.2006CB921300
文摘In the present paper, we study effect of the long-range Coulomb interaction on the thermodynamic propertiesof graphene by renormalization group methods.Our calculations show that both the specific heat and the magneticsusceptibility of the material behave differently from the Landau Fermi liquid.More precisely, we find that thesequantities are logarithmically suppressed with respect to its noninteracting counterpart when temperature is low.
基金supported by the National Natural Science Foundation of China (20573098)the Science and Technology Foundation of National Key Lab of Science and Technology on Combustion and Explosion in China (9140C3503030805)
文摘The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.
基金Supported by the Major State Basic Research Project of China under Grant Nos.2011CB808502 and 2012CB932704the National Natural Science Foundation of China under Grant Nos.101202101 and 10874176
文摘In this work we propose a quantum trajectory approach to the powerful molecular dynamics simulation with surface hopping, from an insight that an effective "observation" is actually implied in the simulation through tracking the forces experienced, just like checking the meter's result in quantum measurement process. This treatment can build the nonadiabatic surface hopping on a physical foundation, instead of the usual fictitious and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.