The developing world still largely depends on biomass, such as wood, animal dung and agricultural waste for domestic fuel sources that are typically burned in traditional stoves. Ethiopia has different biomass resourc...The developing world still largely depends on biomass, such as wood, animal dung and agricultural waste for domestic fuel sources that are typically burned in traditional stoves. Ethiopia has different biomass resource for biochar production, through pyrolysis cook stove co-producing biochar. Coffee husks are the major solid residues from the handling and processing of coffee in the study area. This study was to evaluate the biochar co-producing pyrolysis cook stove with respect to heat transfer through the bed and biochar yield. From allothermal type of pyrolysis cook stove, the stove design was selected for both the computational fluid dynamic (CFD) simulation and experimental measurements. ANSYS 14.5 was used for CFD simulation of the wood combustion. The production of biochar from coffee husk, corncob and sawdust at different heating times, bed and stove surface temperature were undertaken. Bulk density, pH and surface area of the biochar were measured. While good agreement between simulation and experimental result was obtained in the conduction phase during pyrolysis, deviation between the two on account of the effect of volatile gas in changing the temperature trend within the biomass bed was noticed. Within the biomass type, the maximum mean biochar yield (38.91%) was seen from coffee husk. In the case of different stove designs, the minimum mean biochar yield (27.11%) was found from normal Anila stove. The pH of biochar is found to be significantly affected by the type of biomass (9.83 mean for corncob and coffee husk, 6.43 mean for sawdust), heating time (9.19 mean for 90 min and 8.01 mean for 30 min) and stove type (9.52 mean for normal Anila and 8.01 mean for flangeless Anila continuous feeding type). In fact, the type of biomass is observed to significantly affect the bulk density and surface area ofbiochar.展开更多
Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having ...Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.展开更多
Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, ...Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.展开更多
文摘The developing world still largely depends on biomass, such as wood, animal dung and agricultural waste for domestic fuel sources that are typically burned in traditional stoves. Ethiopia has different biomass resource for biochar production, through pyrolysis cook stove co-producing biochar. Coffee husks are the major solid residues from the handling and processing of coffee in the study area. This study was to evaluate the biochar co-producing pyrolysis cook stove with respect to heat transfer through the bed and biochar yield. From allothermal type of pyrolysis cook stove, the stove design was selected for both the computational fluid dynamic (CFD) simulation and experimental measurements. ANSYS 14.5 was used for CFD simulation of the wood combustion. The production of biochar from coffee husk, corncob and sawdust at different heating times, bed and stove surface temperature were undertaken. Bulk density, pH and surface area of the biochar were measured. While good agreement between simulation and experimental result was obtained in the conduction phase during pyrolysis, deviation between the two on account of the effect of volatile gas in changing the temperature trend within the biomass bed was noticed. Within the biomass type, the maximum mean biochar yield (38.91%) was seen from coffee husk. In the case of different stove designs, the minimum mean biochar yield (27.11%) was found from normal Anila stove. The pH of biochar is found to be significantly affected by the type of biomass (9.83 mean for corncob and coffee husk, 6.43 mean for sawdust), heating time (9.19 mean for 90 min and 8.01 mean for 30 min) and stove type (9.52 mean for normal Anila and 8.01 mean for flangeless Anila continuous feeding type). In fact, the type of biomass is observed to significantly affect the bulk density and surface area ofbiochar.
文摘Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.
基金supported by the post BK21 project of the MEST of Koreapartly supported by the NRL program of NRF of Korea (2008-0060153)
文摘Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.