The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate ...Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5°C,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
The adsorption behavior of D301 for molybdenum blue was investigated.The thermodynamics parameters in adsorption process were calculated and the adsorption kinetics was studied.The experimental results show that the a...The adsorption behavior of D301 for molybdenum blue was investigated.The thermodynamics parameters in adsorption process were calculated and the adsorption kinetics was studied.The experimental results show that the adsorption characteristic of D301 for molybdenum blue fits well with the Freundlich adsorption isotherm equation.In the adsorption process of D301 for molybdenum blue,both the enthalpy change ΔH and entropy change ΔS are positive,while the free energy change ΔG is negative when temperatures are in the range of 303-333 K.It is indicated that the adsorption is a spontaneous and endothermic process,and the elevated temperatures benefit to the adsorption.Kinetic studies show that the kinetic data are well described by double driving-force model,and the adsorption rate of molybdenum blue on D301 is controlled by the intraparticle diffusion during the adsorption process.The total kinetic equation is determined.展开更多
Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer...Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.展开更多
The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments w...The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments were carried out at 4 Pa. The results indicate that the reduction rate is increased with increasing temperature, content of aluminum and pellet forming pressure. The XRD patterns of pellets at different reduction stages confirm that the reduction process can be roughly classified into three stages:the formation of MgAl2O4, and Ca12Al14O33 phases;the phase transformation from MgAl2O4 and C12A7 to CaAl2O4;the formation of CaAl4O7 phase. The experimental data were divided into three parts according to the kinetic models. The apparent activation energies of the three parts were determined to be 98.2, 133.0 and 223.3 kJ/mol, respectively.展开更多
The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were es...The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 °C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms.展开更多
Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can ...Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.展开更多
The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ...The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.展开更多
The single phase La2(CO3)3·3.4H2 O was synthesized by hydrothermal method. The thermal decomposition and intermediates and final solid products of La2(CO3)3·3.4H2O from 30 to 1000 °C were characteri...The single phase La2(CO3)3·3.4H2 O was synthesized by hydrothermal method. The thermal decomposition and intermediates and final solid products of La2(CO3)3·3.4H2O from 30 to 1000 °C were characterized by XRD, FTIR and DTA-TG. The kinetics of dehydration of La2(CO3)3·3.4H2O in the temperature range of 30-366 °C was investigated under non-isothermal conditions. Flynn-Wall-Ozawa and Friedman isoconversion methods were used to calculate the activation energy and analyze the reaction steps; multivariate non-linear regression program was applied to determine the most probable mechanism and the kinetic parameters. The results show that the thermal dehydration of La2(CO3)3·3.4H2O is a kind of three-step competitive reaction, and controlled by an n-order initial reaction followed by n-order competitive reaction(FnFnFn model). The activation energy matching with the most probable model is close to value obtained by Friedman method. The fitting curves match the original TG-DTG curves very well.展开更多
In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
X-ray diffraction (XRD), differential scanning calorimeter (DSC) and impact sensitivity instrument were used to characterize the properties of 1-Methyl-4, 5-dinitroimidazole (MDNI). Furthermore, specific heat ca...X-ray diffraction (XRD), differential scanning calorimeter (DSC) and impact sensitivity instrument were used to characterize the properties of 1-Methyl-4, 5-dinitroimidazole (MDNI). Furthermore, specific heat capacity, thermal kinetic parameters, thermal decomposition reaction rate constant, critical explosion temperature and the drop height for impact initiation of MDNI were calculated and analyzed. The results show that MDNI is well-crystallized. The melting point of MDNI is about 74 ℃, and the specific heat capacity of MDNI is 9. 314 4 J/(g · K) and 10. 596 0 J/(g · K) when the temperature is 60 ℃ and 90 ℃, respectively. The apparent activation energy and pre-exponential factor of MDNI are calculated as 81.62 kJ/mol and 6. 78×10^7 s^-1 , respectively. The relationship between thermal decomposition reaction rate constant of MDNI and temperature is logk=7.83-4268.11/T. The critical temperature of MDNI thermal explosion is 234. 86℃. The drop height for impact initiation of MDNI is 95.3 cm.展开更多
Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution a...Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.展开更多
The enthalpies of dissolution of oxymatrine in 0.9%NaCl solution were measured using a RD496-2000 Calvet Microcalorimeter at 309.65 K under atmospheric pressure. The differen tial enthalpy and molar enthalpy of oxymat...The enthalpies of dissolution of oxymatrine in 0.9%NaCl solution were measured using a RD496-2000 Calvet Microcalorimeter at 309.65 K under atmospheric pressure. The differen tial enthalpy and molar enthalpy of oxymatrine dissolution in the 0.9%NaCl solution of were determined. The corresponding kinetic equation that described the dissolution process was elucidated. Moreover, the half-life, molar entropy, molar enthaply, and Gibbs free energy of the dissolution process were also obtained.展开更多
A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the enti...A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the entire implanted hydrogen region during annealing.The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion.The hydrogen blister radius was studied as the function of annealing time,annealing temperature and implantation dose.The critical radius was obtained according to the Griffith energy condition.The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters.展开更多
The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc...The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.展开更多
The hot corrosion behaviors of as-cast and preoxidized Ni-xCr-6.8Al based alloys in the mixture of Na2SO4+25% NaCl at 873 K were studied. The results show that the mass loss of Ni-xCr-6.8Al based alloys decreases wit...The hot corrosion behaviors of as-cast and preoxidized Ni-xCr-6.8Al based alloys in the mixture of Na2SO4+25% NaCl at 873 K were studied. The results show that the mass loss of Ni-xCr-6.8Al based alloys decreases with the increase of Cr content. Preoxidation improves the resistance to corrosion regardless of the concentration of Cr. The kinetics of as-cast Ni-12Cr-6.8Al and Ni-16Cr-6.8Al based alloys fits the parabolic law well, while that of the as-cast Ni-20Cr-6.8Al based alloy fits the power law. The kinetics of all the preoxidized samples obey the logarithmic law. The mechanism of the as-cast alloys can be well explained by the acid-base melting model. The behavior of the preoxidized alloys is found to be mainly determined by the properties of the oxide layer formed during the preoxidation to a large extend.展开更多
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis...Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.展开更多
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金This work was supported by the National Natura]Science Foundation of China(No.22073090 No.21991132,No.52021002)the National Key R&D Program of China(No.2020YFA0710703)the Funds of Youth Innovation Promotion Association and the Fun damental Research Funds for the Central Universities.
文摘Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5°C,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
基金Project(2007AA06Z129) supported by the High-tech Research and Development Program of China
文摘The adsorption behavior of D301 for molybdenum blue was investigated.The thermodynamics parameters in adsorption process were calculated and the adsorption kinetics was studied.The experimental results show that the adsorption characteristic of D301 for molybdenum blue fits well with the Freundlich adsorption isotherm equation.In the adsorption process of D301 for molybdenum blue,both the enthalpy change ΔH and entropy change ΔS are positive,while the free energy change ΔG is negative when temperatures are in the range of 303-333 K.It is indicated that the adsorption is a spontaneous and endothermic process,and the elevated temperatures benefit to the adsorption.Kinetic studies show that the kinetic data are well described by double driving-force model,and the adsorption rate of molybdenum blue on D301 is controlled by the intraparticle diffusion during the adsorption process.The total kinetic equation is determined.
基金Projects(51374064,51004033,51074044)supported by the National Natural Science Foundation of ChinaProject(2012AA062303)supported by High-tech Research and Development Program of China
文摘Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.
基金Project(MYF2011-34)supported by High-tech R&D Plan of Liaoning Province,ChinaProject(2011221002)supported by Industrial Research Projects of Liaoning Province,ChinaProject(N100302009)supported by the Fundamental Research Funds for the Central Universities,China
文摘The vacuum aluminothermic reduction of the mixture of calcined magnesite and calcined dolomite was studied. An isothermal reduction method satisfying the vacuum aluminothermic reduction was proposed. The experiments were carried out at 4 Pa. The results indicate that the reduction rate is increased with increasing temperature, content of aluminum and pellet forming pressure. The XRD patterns of pellets at different reduction stages confirm that the reduction process can be roughly classified into three stages:the formation of MgAl2O4, and Ca12Al14O33 phases;the phase transformation from MgAl2O4 and C12A7 to CaAl2O4;the formation of CaAl4O7 phase. The experimental data were divided into three parts according to the kinetic models. The apparent activation energies of the three parts were determined to be 98.2, 133.0 and 223.3 kJ/mol, respectively.
基金Project(2012CB619505)supported by the National Basic Research Program of China
文摘The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 °C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms.
基金Project (20130206059G X) supported by Science and Technology Key Project of Jilin Province,ChinaProject (20101553) supported by the Natural Science Foundation of Jilin Province,China+1 种基金Project (BSJXM-201226) supported by Doctor Science Research Starting Projects of Northeast Dianli University,ChinaProject (2013) supported by the 12th Five-Year Enhancing Innovation Projects of Northeast Dianli University,China
文摘Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.
基金Project(51374058)supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.
基金Project(201011005-5)supported by the National Land and Resources Public Welfare Scientific Research Project of ChinaProject(41030426)supported by the National Natural Science Foundation of China+1 种基金Project(20095122110015)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2010-32)supported by Scientific Research Foundation of the Education Ministry for Returned Chinese Scholars,China
文摘The single phase La2(CO3)3·3.4H2 O was synthesized by hydrothermal method. The thermal decomposition and intermediates and final solid products of La2(CO3)3·3.4H2O from 30 to 1000 °C were characterized by XRD, FTIR and DTA-TG. The kinetics of dehydration of La2(CO3)3·3.4H2O in the temperature range of 30-366 °C was investigated under non-isothermal conditions. Flynn-Wall-Ozawa and Friedman isoconversion methods were used to calculate the activation energy and analyze the reaction steps; multivariate non-linear regression program was applied to determine the most probable mechanism and the kinetic parameters. The results show that the thermal dehydration of La2(CO3)3·3.4H2O is a kind of three-step competitive reaction, and controlled by an n-order initial reaction followed by n-order competitive reaction(FnFnFn model). The activation energy matching with the most probable model is close to value obtained by Friedman method. The fitting curves match the original TG-DTG curves very well.
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
文摘X-ray diffraction (XRD), differential scanning calorimeter (DSC) and impact sensitivity instrument were used to characterize the properties of 1-Methyl-4, 5-dinitroimidazole (MDNI). Furthermore, specific heat capacity, thermal kinetic parameters, thermal decomposition reaction rate constant, critical explosion temperature and the drop height for impact initiation of MDNI were calculated and analyzed. The results show that MDNI is well-crystallized. The melting point of MDNI is about 74 ℃, and the specific heat capacity of MDNI is 9. 314 4 J/(g · K) and 10. 596 0 J/(g · K) when the temperature is 60 ℃ and 90 ℃, respectively. The apparent activation energy and pre-exponential factor of MDNI are calculated as 81.62 kJ/mol and 6. 78×10^7 s^-1 , respectively. The relationship between thermal decomposition reaction rate constant of MDNI and temperature is logk=7.83-4268.11/T. The critical temperature of MDNI thermal explosion is 234. 86℃. The drop height for impact initiation of MDNI is 95.3 cm.
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2010FJ4075) supported by Science and Technology Planning Project of Hunan Province, China+1 种基金Project (CDJJ-10010205) supported by the Science Foundation of Changsha University, ChinaProject supported by the Construct Program of the Key Discipline in Hunan Province, China
文摘Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.
文摘The enthalpies of dissolution of oxymatrine in 0.9%NaCl solution were measured using a RD496-2000 Calvet Microcalorimeter at 309.65 K under atmospheric pressure. The differen tial enthalpy and molar enthalpy of oxymatrine dissolution in the 0.9%NaCl solution of were determined. The corresponding kinetic equation that described the dissolution process was elucidated. Moreover, the half-life, molar entropy, molar enthaply, and Gibbs free energy of the dissolution process were also obtained.
文摘A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the entire implanted hydrogen region during annealing.The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion.The hydrogen blister radius was studied as the function of annealing time,annealing temperature and implantation dose.The critical radius was obtained according to the Griffith energy condition.The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters.
基金Supported by the National Natural Science Foundation of China(61074162)the Ph.D.Program Foundation of Ministry of Education of China(200802870011)~~
文摘The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.
基金Project (2009AA032601) supported by the National High-tech Research and Development Program of ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘The hot corrosion behaviors of as-cast and preoxidized Ni-xCr-6.8Al based alloys in the mixture of Na2SO4+25% NaCl at 873 K were studied. The results show that the mass loss of Ni-xCr-6.8Al based alloys decreases with the increase of Cr content. Preoxidation improves the resistance to corrosion regardless of the concentration of Cr. The kinetics of as-cast Ni-12Cr-6.8Al and Ni-16Cr-6.8Al based alloys fits the parabolic law well, while that of the as-cast Ni-20Cr-6.8Al based alloy fits the power law. The kinetics of all the preoxidized samples obey the logarithmic law. The mechanism of the as-cast alloys can be well explained by the acid-base melting model. The behavior of the preoxidized alloys is found to be mainly determined by the properties of the oxide layer formed during the preoxidation to a large extend.
基金Project (50925521) supported by the National Natural Science Fund for Distinguished Young Scholars of China
文摘Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.