期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
无限弹性平面中孔附近的偶合热动应力分布(英文)
1
作者 盖秉政 刘杰 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第1期23-28,共6页
尽管在一个无限弹性介质中一维腔体的偶合热动应力问题已经解决,但是任意形腔体附近的二维热应力问题目前尚未解决。研究了在一个无限弹性平面中任意形腔体在稳态谐和温度场T=T0eiωt作用下的热动应力问题,求得了用Hankle函数表示的问... 尽管在一个无限弹性介质中一维腔体的偶合热动应力问题已经解决,但是任意形腔体附近的二维热应力问题目前尚未解决。研究了在一个无限弹性平面中任意形腔体在稳态谐和温度场T=T0eiωt作用下的热动应力问题,求得了用Hankle函数表示的问题的解析解,并给出圆腔及椭圆腔相应的数值结果。 展开更多
关键词 偶合热动应力 任意形腔体 复合函数法
下载PDF
空心圆筒的非傅立叶热冲击问题研究 被引量:2
2
作者 莽珊珊 谢玉树 《弹箭与制导学报》 CSCD 北大核心 2006年第4期181-184,共4页
在热冲击问题中引进非傅立叶分析,考虑了在极端热传递条件下的非稳态传热过程中热量传播速度的有限性,然后用一种解析方法得到温度场和应力波传播的精确解,进而分析了空心圆柱体内的热动应力的响应和分布规律。结果表明,在热作用瞬态程... 在热冲击问题中引进非傅立叶分析,考虑了在极端热传递条件下的非稳态传热过程中热量传播速度的有限性,然后用一种解析方法得到温度场和应力波传播的精确解,进而分析了空心圆柱体内的热动应力的响应和分布规律。结果表明,在热作用瞬态程度较高的情况下,受热冲击物体内尖峰应力将大大增加。 展开更多
关键词 非傅立叶效应 冲击 热动应力
下载PDF
Effects of Fluorescent Pair on the Kinetics of DNA Strand Displacement Reaction
3
作者 Chengxu Li Shiyan Xiao Haojun Liang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第5期679-684,I0094-I0098,I0101,共12页
Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate ... Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5°C,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits. 展开更多
关键词 DNA strand displacement Fluorescent label KINETICS Thermodynamic property
下载PDF
Thermal-mechanical response of microscale functional film for infrared window 被引量:4
4
作者 刘星 汪新智 +1 位作者 朱嘉琦 韩杰才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1791-1799,共9页
Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional fi... Infrared window in hypersonic missile usually suffers complex aerodynamic force/heat during high-speed flight.A finite element method was adopted to simulate the thermal and stress response of microscale functional film for infrared window under different aerodynamic heats/forces conditions.Temperature and stress distribution were obtained with different heat fluxes.There is almost constant stress distribution along the film thickness except a sudden decrease near the substrate.The maximum stresses are located at the points which are 0.3 mm away from the edges.Different film materials result in different stress values.The temperature and stress in ZrN are larger than those in Y2O3.Besides the numerical simulation,an oxygen propane flame jet impingement test was performed to investigate thermal shock failure of the infrared window.Some place of the window surface has spots damage and some place has line crack damage after thermal shock. 展开更多
关键词 infrared window thin films finite element method thermal stress aerodynamic heating
下载PDF
Fluidized-bed chlorination thermodynamics and kinetics of Kenya natural rutile ore 被引量:3
5
作者 牛丽萍 张廷安 +2 位作者 倪培远 吕国志 欧阳全胜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3448-3455,共8页
Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer... Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction. 展开更多
关键词 natural rutile THERMODYNAMICS KINETICS gas-solid reaction fluidized bed two-phase model
下载PDF
THERMOHYDRODYNAMIC LUBRICATION ANALYSIS ON EQUILIBRIUM POSITION AND DYNAMIC COEFFICIENT OF JOURNAL BEARING 被引量:1
6
作者 李元生 于明 +1 位作者 敖良波 岳珠峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期227-236,共10页
The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently... The finite element method (FEM) is introduced to calculate the oil film pressure and temperature distribution of a journal bearing. The perturbation is performed directly on the finite element equation. Consequently, the Jacobian matrices of the oil film forces are concisely obtained. The equilibrium position of the bearing with a given static load is found by the Newton-Raphson method. As byproducts, dynamic coefficients are obtained simultaneously without any extra computing time. From the numerical results, it is concluded that the effects of film temperature on stiffness coefficients are bigger than those on damping coefficients. With the increase of rotational speed, the load capacity and the stiffness coefficients of the journal bearing are increased when the eccentricity is small, while decreased when the eccentricity is big. 展开更多
关键词 thermohydrodynamic lubrication thermal effect finite element analysis journal bearing
下载PDF
Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel with strain effect 被引量:5
7
作者 任发才 陈军 陈飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1407-1413,共7页
Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the s... Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively. 展开更多
关键词 martensitic stainless steel hot deformation behavior flow stress constitutive modeling
下载PDF
Atomistic simulation of thermal effects and defect structures during nanomachining of copper 被引量:5
8
作者 郭永博 梁迎春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2762-2770,共9页
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis... Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality. 展开更多
关键词 monocrystalline copper atomistic simulation thermal effects molecular dynamics simulation nanomachining temperature distribution defect structures dislocations VACANCIES
下载PDF
Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature 被引量:17
9
作者 张辉 金能萍 陈江华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期437-442,共6页
The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show th... The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, then the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stresses depend on the temperature compensated strain rate, which can be represented by the Zener-Hollomon parameter Z in the hyperbolic-sine equation with hot deformation activation energy of 244.64 kJ/mol for 7056 alloy and 229.75 kJ/mol for 7150 alloy, respectively, while the peak stresses for the former are lower than those for the latter under the similar compression condition. The deformed microstructures consist of a great amount of precipitates within subgrains in the elongated grains at high Z value and exhibit well formed subgrains in the recrystallized grains at low Z value. The smaller subgrains and greater density of fine precipitates in 7150 alloy are responsible for the high peak stresses because of the substructural strengthening and precipitating hardening compared with 7056 alloy. 展开更多
关键词 Al-Zn-Mg-Cu-Zr aluminum alloys flow stress dynamic recrystallization dynamic precipitation
下载PDF
Effect of TPB on curing reaction of HTPB-TDI
10
作者 欧亚鹏 常双君 张百磊 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期89-92,共4页
Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC).... Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %. 展开更多
关键词 hydroxyl-terminated polybutadiene (HTPB) CATALYST thermal analysis curing reaction kinetics
下载PDF
Kinetics Study on O2 Adsorption and OHad Desorption at Pt(111), Its Implication to Oxygen Reduction Reaction Kinetics
11
作者 杨帆 廖玲文 +2 位作者 李明芳 梅东 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第4期479-484,J0002,共7页
Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potential... Kinetics of dissociative O2 adsorption, OHad desorption, and oxygen reduction reaction (ORR) at Pt(111) electrode in 0.1 mol/L HClO4 has been investigated. Reversible OHad adsorption/desorption occurs at potentials from 0.6 V to 1.0 V (vs. RHE) with the exchange current density of ca. 50 mA/cm^2 at 0.8 V, the fast kinetics of OHad desorption indicates that it should not be the rate determining step for ORR. In the kineticor kinetic-mass transport mix controlled potential region, ORR current at constant potential displays slight decrease with reaction time. ORR current in the positive-going potential scan is slightly larger than that in the subsequent negative-going scan with electrode rotation speed (〉800 r/min) and slow potential scan rate (〈100 mV/s). The open circuit potential of Pt/0.1 mol/L HClO4 interface increases promptly from 0.9 V to 1.0 V after switch from O2 free- to O2-saturated solution. The increase of open circuit potential as well as ORR current decays under potential control due to the accumulation of OHad from dissociative adsorption of O2. It indicates that at Pt(111) the net rate for O2 decomposition to OHad is slightly faster than that for OHad removal, one cannot simply use the assumption of rate determining step to discuss ORR kinetics. Instead, the ORR kinetics is determined by both the kinetics for O2 decomposition to OHad as well as the thermo-equilibrium of OHad+H^++e→←H2O. 展开更多
关键词 Oxygen reduction reaction Pt(111) electrode Rate determining step Kinetics Overpotential Thermodynamic equilibrium
下载PDF
Constitutive modeling for dynamic recrystallization kinetics of Mg-4Zn-2Al-2Sn alloy 被引量:3
12
作者 赵东清 杨院生 +2 位作者 周吉学 刘玉 唐守秋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期340-347,共8页
In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed i... In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed in the temperature range of 498-648 K and the strain rate range of 0.01-5 s~(-1) on a Gleeble 3800 thermo-mechanical simulator. Based on the regression analysis by Arrhenius type equation and Avrami type equation of flow behavior, the activation energy of deformation of ZAT422 alloy was determined as 155.652 k J/mol, and the constitutive equations for flow behavior and the dynamic recrystallization(DRX) kinetic model of ZAT422 alloy were established. Microstructure observation shows that when the temperature is as low as 498 K, the DRX is not completed as the true strain reaches 0.9163. However, with the temperature increasing to 648 K, the lower strain rate is more likely to result in some grains' abnormal growth. 展开更多
关键词 Mg-4Zn-2Al-2Sn alloy hot deformation flow stress dynamic recrystallization
下载PDF
Flow behavior and microstructure evolution of 6A82 aluminium alloy with high copper content during hot compression deformation at elevated temperatures 被引量:6
13
作者 杨群英 杨东 +4 位作者 张志清 曹玲飞 吴晓东 黄光杰 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期649-657,共9页
The flow behavior and microstructure evolution of 6A82 aluminum alloy (Al?Mg?Si?Cu) with high copper content were studied on a Gleeble?1500 system by isothermal hot compression test in the temperature range from 320 t... The flow behavior and microstructure evolution of 6A82 aluminum alloy (Al?Mg?Si?Cu) with high copper content were studied on a Gleeble?1500 system by isothermal hot compression test in the temperature range from 320 to 530 °C and the strain rate range from 0.001 to 10 s?1. The results reveal that the flow stress of the alloy exhibits a continuous flow softening behavior at low temperatures of 320?390 °C, whereas it reaches steady state at high temperatures (≥460°C), which are influenced greatly by the Zener?Hollomon parameter (Z) in the hyperbolic sine with the hot deformation activation energy of 325.12 kJ/mol. Microstructure characterizations show that prominent dynamic recrystallization and coarsening of dynamic precipitation may be responsible for the continuous flow softening behavior. Due to deformation heating at high strain rates (≥1 s?1), dynamic recrystallization is more prominent in the specimen deformed at 530 °C and 10 s?1 than in the specimen deformed at 460 °C and 0.1 s?1 even though they have very close lnZ values. 展开更多
关键词 Al-Mg-Si-Cu aluminum alloy isothermal hot compression flow stress dynamic recrystallization dynamic precipitation
下载PDF
Hot deformation behavior and processing maps of as-cast Mg-8Zn-1Al-0.5Cu-0.5Mn alloy 被引量:6
14
作者 朱绍珍 罗天骄 +1 位作者 张廷安 杨院生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3232-3239,共8页
The hot deformation behavior of as-cast Mg-8Zn-1Al-0.5Cu-0.5Mn alloy was studied by hot compression tests at temperatures of 200-350 °C and strain rates of 0.001-1 s-1.The results show that the flow stress increa... The hot deformation behavior of as-cast Mg-8Zn-1Al-0.5Cu-0.5Mn alloy was studied by hot compression tests at temperatures of 200-350 °C and strain rates of 0.001-1 s-1.The results show that the flow stress increases significantly with increasing strain rate,and decreases as the temperature increases.The flow stress model based on the regression analysis was developed to predict the flow behavior of Mg-8Zn-1Al-0.5Cu-0.5Mn alloy during the hot compression,and the model shows a good agreement with experimental results.Meanwhile,the processing maps were established according to the dynamic materials model.The processing maps show that the increase of strain enlarges the instability domains,and the alloy shows good hot workability at high temperatures and low strain rates. 展开更多
关键词 magnesium alloy hot deformation flow stress processing map dynamic recrystallization
下载PDF
Flow stress behavior of Al-Cu-Li-Zr alloy containing Sc during hot compression deformation 被引量:2
15
作者 梁文杰 潘清林 +2 位作者 何运斌 李运春 张小刚 《Journal of Central South University of Technology》 EI 2008年第3期289-294,共6页
The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were prefor... The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653-773 K and in the strain rate range of 0.001-10 s-1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature,and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate,and in an Arrhenius relationship with the temperature,which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n,α and A in the analytical expressions of flow stress σ are fitted to be 5.62,0.019 MPa-1 and 1.51×1016 s-1,respectively. The hot deformation activation energy is 240.85 kJ/mol. 展开更多
关键词 Al-Cu-Li-Zr alloy containing Sc flow stress hot compression deformation Zener-Hollomon parameter
下载PDF
Solar-heating boosted catalytic reduction of CO_(2) under full-solar spectrum 被引量:2
16
作者 Hongjia Wang Yanjie Wang +3 位作者 Lingju Guo Xuehua Zhang Caue Ribeiro Tao He 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期131-139,共9页
Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low e... Catalytic converting CO2 into fuels with the help of solar energy is regarded as‘dream reaction’,as both energy crisis and environmental issue can be mitigated simultaneously.However,it is still suffering from low efficiency due to narrow solar-spectrum utilization and sluggish heterogeneous reaction kinetics.In this work,we demonstrate that catalytic reduction of CO2 can be achieved over Au nanoparticles(NPs)deposited rutile under full solar-spectrum irradiation,boosted by solar-heating effect.We found that UV and visible light can initiate the reaction,and the heat from IR light and local surface-plasmon resonance relaxation of Au NPs can boost the reaction kinetically.The apparent activation energy is determined experimentally and is used to explain the superior catalytic activity of Au/rutile to rutile in a kinetic way.We also find the photo-thermal synergy in the Au/rutile system.We envision that this work may facilitate understanding the kinetics of CO2 reduction and developing feasible catalytic systems with full solar spectrum utilization for practical artificial photosynthesis. 展开更多
关键词 CO_(2) reduction Apparent activation energy Reaction kinetics Solar heating Photo-thermal synergy
下载PDF
Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli−Armstrong,Johnson−Cook and Arrhenius-type constitutive models 被引量:16
17
作者 Yu LIU Ming LI +3 位作者 Xian-wei REN Zheng-bing XIAO Xie-yi ZHANG Yuan-chun HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期3031-3042,共12页
To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s... To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s^−1,respectively.Based on the modified Zerilli−Armstrong,modified Johnson-Cook,and strain-compensated Arrheniustype models,three constitutive equations were established to describe the high-temperature flow stress of this alloy.Meanwhile,the predictability of the obtained models was evaluated by the calculation of correlation coefficients(r)and absolute errors(Δ),where the values of r for the modified Zerilli−Armstrong,Johnson−Cook,and Arrhenius-type constitutive models were computed to be 0.935,0.968 and 0.984,and the values ofΔwere calculated to be 13.4%,10.5%and 6.7%,respectively.Moreover,the experimental and predicted flow stresses were compared in the strain range of 0.1−0.5,the results further indicated that the obtained modified Arrhenius-type model possessed better predictability on hot flow behavior of Hastelloy C-276. 展开更多
关键词 Hastelloy C-276 alloy hot tensile behaviors constitutive models flow stress
下载PDF
Shock resistance of supercharged boilers through integration with ship structure 被引量:1
18
作者 YAO Xiong-liang FENG Lin-han ZHANG A-man ZHOU Qi-xin 《Journal of Marine Science and Application》 2007年第4期18-26,共9页
The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation met... The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers. 展开更多
关键词 supercharged boiler numerical simulation dynamic response shock resistance integrationof equipment and ship structure
下载PDF
Dynamics and Thermodynamics of Porous HMX-like Material Under Shock 被引量:7
19
作者 XU Ai-Guo ZHANG Guang-Cai ZHANG Ping PAN Xiao-Fei ZHU Jian-Shi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期901-908,共8页
Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological charac... Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals 展开更多
关键词 porous material shock wave Minkowski functionals
下载PDF
Microstructural evolution,flow stress and constitutive modeling of Al−1.88Mg−0.18Sc−0.084Er alloy during hot compression 被引量:4
20
作者 Fu-rong CAO Bin YIN +3 位作者 Si-yuan LIU Lu SHI Shun-cheng WANG Jing-lin WEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期53-73,共21页
To explore the hot compression behavior and microstructural evolution,fine-grained Al−1.88Mg−0.18Sc−0.084Er(wt.%)aluminum alloy wires were fabricated with Castex(continuous casting−extrusion)and ECAP-Conform,and their... To explore the hot compression behavior and microstructural evolution,fine-grained Al−1.88Mg−0.18Sc−0.084Er(wt.%)aluminum alloy wires were fabricated with Castex(continuous casting−extrusion)and ECAP-Conform,and their hot compression behavior was investigated at temperatures of 673−793 K and strain rates of 0.001−10 s−1;the microstructures were characterized by optical microscope,X-ray diffractometer,transmission electron microscope,and electron backscattered diffractometer,and the flow stresses were obtained by thermal compression simulator.Microstructural evolution and flow curves reveal that dynamic recovery is the dominant softening mechanism.Continuous dynamic recrystallization followed by dynamic grain growth takes place at a temperature of 773 K and a strain rate of 0.001 s−1;the yielding drop phenomenon was discovered.Hyperbolic sine constitutive equation incorporating dislocation variables was presented,and a power law constitutive equation was established.The stress exponent is 3.262,and the activation energy for deformation is 154.465 kJ/mol,indicating that dislocation viscous glide is the dominant deformation mechanism. 展开更多
关键词 Al−Mg alloy ECAP-Conform hot compression microstructure flow stress constitutive equation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部