Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding bead...Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.展开更多
The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness, oxy-acetylene flame as the heat source for multi pass line heating to achieve...The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness, oxy-acetylene flame as the heat source for multi pass line heating to achieve 3-D bending of plates with varying thicknesses was studied. The oxy-acetylene flame was modeled as the moving heat source in the FEM analysis. The transient thermal histories were predicted taking into account the temperature dependent thermo-mechanical properties. A comparative study between single pass and double pass line heating residual deformation was also carried out. The temperature distribution and residual detbrmations predicted by the numerical model developed in the present work compared fairly well with those of the experimental ones.展开更多
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter...In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.展开更多
Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having ...Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.展开更多
Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, ...Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.展开更多
基金CONACyT-México for the scholarship providedCONACyT (Project 736)SIP-IPN are also acknowledged for funds given to conduct this research
文摘Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.
文摘The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness, oxy-acetylene flame as the heat source for multi pass line heating to achieve 3-D bending of plates with varying thicknesses was studied. The oxy-acetylene flame was modeled as the moving heat source in the FEM analysis. The transient thermal histories were predicted taking into account the temperature dependent thermo-mechanical properties. A comparative study between single pass and double pass line heating residual deformation was also carried out. The temperature distribution and residual detbrmations predicted by the numerical model developed in the present work compared fairly well with those of the experimental ones.
基金Supported by Tianjin Construction Committee Technology Project (No2007-37)
文摘In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.
文摘Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.
基金supported by the post BK21 project of the MEST of Koreapartly supported by the NRL program of NRF of Korea (2008-0060153)
文摘Line heating method is widely used to manufacture curved surfaces in ship building. The main factors governing the quality of the manufactured products are the moving velocity of the heating source, heating strength, and heating ways. In this study, the temperature distributions of the heated plate were investigated with the condition that the line heating process was automatic. The temperature variations were also investigated with the changes of those three variables. The numerical results showed that the peak temperature decreased as the moving velocity of the heating source increased. It also revealed that the peak temperatures changed linearly with the changes of the heating source.