Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts’ surface cond...Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts’ surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part’s surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface’s activity or passivity can be detected electrochenucalry, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.展开更多
Bifurcation analysis of ignition and extinction of catalytic combustion in a short micro-channel is carded out with the laminar flow model incorporated as the flow model. The square of transverse Thiele modulus and th...Bifurcation analysis of ignition and extinction of catalytic combustion in a short micro-channel is carded out with the laminar flow model incorporated as the flow model. The square of transverse Thiele modulus and the residence time are used as bifurcation parameters. The influences of different parameters on ignition and extinction behavior are investigated. It is shown that all these parameters have great effects on the bifurcation behaviors of ignition and extinction in the short micro-channel. The effects of flow models on bifurcation behaviors of combustion are also analyzed. The results show that in comparison with the flat velocity profile model, for the case of the laminar flow model, the temperatures of ignition and extinction of combustion are higher and the unsteady multiple solution region is larger.展开更多
基金the financial support from AiF(Arbeitsgemeinschaft industieller Forschungsvereinigungen Otto von Guericke)and DFG(Deutsche Forschungsgemeinschaft)which made the work documented in this text possible.
文摘Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts’ surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part’s surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface’s activity or passivity can be detected electrochenucalry, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.
基金the National Key Basic Research Project of China(No.2001CB209201)
文摘Bifurcation analysis of ignition and extinction of catalytic combustion in a short micro-channel is carded out with the laminar flow model incorporated as the flow model. The square of transverse Thiele modulus and the residence time are used as bifurcation parameters. The influences of different parameters on ignition and extinction behavior are investigated. It is shown that all these parameters have great effects on the bifurcation behaviors of ignition and extinction in the short micro-channel. The effects of flow models on bifurcation behaviors of combustion are also analyzed. The results show that in comparison with the flat velocity profile model, for the case of the laminar flow model, the temperatures of ignition and extinction of combustion are higher and the unsteady multiple solution region is larger.