The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the m...Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.展开更多
Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01...Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.展开更多
Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomer...Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.展开更多
In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and ...In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and blank holder force(BHF) on formability was quantified using Taguchi design, analysis of variance(ANOVA) and mathematical statistics. The finite element(FE) model has been established in software Pamstamp for simulation and analysis of their effects on the minimum thickness and thickness variation of the hot-stamped component. The major factors influencing the minimum thickness of the hot-stamped part has been found to be BHF and friction coefficient with influence significance of 35.3% and 34.88%, respectively. Additionally, punch velocity and BHF affect the thickness deviation significantly with influence significance of 40.43% and 35.42%, respectively. Furthermore, a serious thinning occurs on the punch corner region of the hot-stamped cup when the BHF is larger than 2.4 kN. The thickness deviation of the hotformed cup has been found to be firstly decreased and then increased with the increase of punch velocity. Low friction coefficient between punch and blank led to crack at bottom centre of the cup. Moreover, different type, phenomenon and mechanism of defects occurring during hot stamping process, such as crack and wrinkling, were discussed. The crack mode was dimple-dominated ductile fracture, which was induced by micro-void nucleation, growth and coalescence.展开更多
The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 p...The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 particles, existing as a stable hexagonal phase(α-Al2O3), are uniformly dispersed in Mo matrix. The ultrafine α-Al2O3 particles remarkably refine grain size and increase dislocation density of Mo alloys. Moreover, a good interfacial bonding zone between α-Al2O3 and Mo grain is obtained. The crystallographic orientations of the interface of the Al2O3 particles and Mo matrix are [111]a-Al2O3//[111]Mo and(112)a-Al2O3//(0 11)Mo. Due to the effect of secondary phase and dislocation strengthening, the yield strength of Mo-2.0 vol.%Al2O3 alloy annealed at 1200 ℃ is approximately 56.0% higher than that of pure Mo. The results confirm that the addition of Al2O3 particles is a promising method to improve the mechanical properties of Mo alloys.展开更多
A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model ...A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.展开更多
A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investi...A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.展开更多
The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined t...The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined to establish the analytical expression of the critical pressure of punch. The results show that the active friction between the granule medium and the sheet metal, as well as the non-uniform internal pressure presented by the solid granule medium, can obviously improve the forming performance of the sheet metal. The critical pressure of punch increases with the increment of the friction coefficient between the granule medium and sheet metal, as well as the plastic strain ratio, whereas it decreases with the increase of the material-hardening exponent. Furthermore, the impact on the critical pressure from high to low order is the plastic strain ratio, the friction coefficient,and material-hardening exponent. The deep-drawing experiment with HGMF technology on AZ31B magnesium alloy sheet verified the instability theory.Key words: hot-granule展开更多
Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum ...Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy.展开更多
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
基金Project (51205102) supported by the National Natural Science Foundation of ChinaProject (2012M511401) supported by the China Postdoctoral Science FoundationProject (gf201101001) supported by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, China
文摘Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.
基金Project(51301065)supported by the National Natural Science Foundation of ChinaProject(15B063)supported by the Youth Research Foundation of Education Bureau of Hunan Province,China
文摘Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%.
基金This work is supported by the National Natu- ral Science Foundation of China (No.51106146 and No.51036007), China Postdoctoral Science Foundation (No.20100480047 and No.201104326), Chinese Univer- sities Scientific Fund (No.WK2310000010), and Chinese Academy of Sciences.
文摘Pyrolysis of benzene at 30 Torr was studied from 1360 K to 1820 K in this work. Synchrotron vacuum ultraviolet photoionization mass spectrometry was employed to detect the pyroly- sis products such as radicals, isomers and polycyclic aromatic hydrocarbons, and measure their mole fraction profiles versus temperature. A low-pressure pyrolysis model of benzene was developed and validated by the experimental results. Rate of production analysis was performed to reveal the major reaction networks in both fuel decomposition and aromatic growth processes. It is concluded that benzene is mainly decomposed via H-abstraction reaction to produce phenyl and partly decomposed via unimolecular decomposition reac- tions to produce propargyl or phenyl. The decomposition process stops at the formation of acetylene and polyyne species like diacetylene and 1,3,5-hexatriyne due to their high thermal stabilities. Besides, the aromatic growth process in the low-pressure pyrolysis of benzene is concluded to initiate from benzene and phenyl, and is controlled by the even carbon growth mechanism due to the inhibited formation of C5 and C7 species which play important roles in the odd carbon growth mechanism.
文摘In this study, a novel punch toolset was developed to investigate the hot stamping of AA6082-T4 sheet. The effect of the process parameters, including forming temperature, punching velocity, friction coefficient, and blank holder force(BHF) on formability was quantified using Taguchi design, analysis of variance(ANOVA) and mathematical statistics. The finite element(FE) model has been established in software Pamstamp for simulation and analysis of their effects on the minimum thickness and thickness variation of the hot-stamped component. The major factors influencing the minimum thickness of the hot-stamped part has been found to be BHF and friction coefficient with influence significance of 35.3% and 34.88%, respectively. Additionally, punch velocity and BHF affect the thickness deviation significantly with influence significance of 40.43% and 35.42%, respectively. Furthermore, a serious thinning occurs on the punch corner region of the hot-stamped cup when the BHF is larger than 2.4 kN. The thickness deviation of the hotformed cup has been found to be firstly decreased and then increased with the increase of punch velocity. Low friction coefficient between punch and blank led to crack at bottom centre of the cup. Moreover, different type, phenomenon and mechanism of defects occurring during hot stamping process, such as crack and wrinkling, were discussed. The crack mode was dimple-dominated ductile fracture, which was induced by micro-void nucleation, growth and coalescence.
基金Projects(U1704152,U1804124)supported by the National Natural Science Foundation of ChinaProject(174100510012)supported by Plan for Scientific Innovation Talent of Henan Province,China。
文摘The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 particles, existing as a stable hexagonal phase(α-Al2O3), are uniformly dispersed in Mo matrix. The ultrafine α-Al2O3 particles remarkably refine grain size and increase dislocation density of Mo alloys. Moreover, a good interfacial bonding zone between α-Al2O3 and Mo grain is obtained. The crystallographic orientations of the interface of the Al2O3 particles and Mo matrix are [111]a-Al2O3//[111]Mo and(112)a-Al2O3//(0 11)Mo. Due to the effect of secondary phase and dislocation strengthening, the yield strength of Mo-2.0 vol.%Al2O3 alloy annealed at 1200 ℃ is approximately 56.0% higher than that of pure Mo. The results confirm that the addition of Al2O3 particles is a promising method to improve the mechanical properties of Mo alloys.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 990630) and the State Major Basic Research Development Program (No. G20000263).
文摘A method for incorporation of controlling the heat exchanger networks with or without splits is proposed by integrating mathemati-cal programming and knowledge engineering. The simultaneous optimal mathematical model is established. This method can be practically used in the integration of large-scale heat exchanger networks, not only to synthesize automatically but also to satisfy the requirement of struc-tural controllability with more objective human intervention.
文摘A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.
基金Projects(51305385,51305386)supported by the National Natural Science Foundation of ChinaProject(QN20131080)supported by the Science Research Youth Foundation of Hebei Province Universities,China
文摘The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined to establish the analytical expression of the critical pressure of punch. The results show that the active friction between the granule medium and the sheet metal, as well as the non-uniform internal pressure presented by the solid granule medium, can obviously improve the forming performance of the sheet metal. The critical pressure of punch increases with the increment of the friction coefficient between the granule medium and sheet metal, as well as the plastic strain ratio, whereas it decreases with the increase of the material-hardening exponent. Furthermore, the impact on the critical pressure from high to low order is the plastic strain ratio, the friction coefficient,and material-hardening exponent. The deep-drawing experiment with HGMF technology on AZ31B magnesium alloy sheet verified the instability theory.Key words: hot-granule
文摘Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy.