The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,...The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.展开更多
To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopk...To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.展开更多
The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional win...The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional wind at 925 h Pa.The first mode(EOF1)exhibits an in-phase relationship among different CEF channels over the AAM region,which has received much attention owing to its tight linkage with ENSO.By contrast,the second mode(EOF2)possesses an out-of-phase relationship between the Bay of Bengal(BOB)CEF(90°E)and Australian CEF,among which the New Guinea CEF near 150°E shows the most significant opposite correlation with the BOB CEF.Observational and numerical model results suggest that the equatorially asymmetric heat source(sink)over the western(eastern)Maritime Continent,closely associated with the in-situ sea surface temperature anomaly,can induce cross-equatorial northerly(southerly)flow into the heating hemisphere,which dominates the out-of-phase relationship between the BOB and New Guinea CEFs.Furthermore,an equatorially symmetric heating over the central Pacific may indirectly change the CEFs by modulating the zonal atmospheric circulation near the Maritime Continent.展开更多
基金supported by the National Natural Science Foundation of China (No.51901153)Shanxi Scholarship Council of China (No.2019032)+2 种基金Natural Science Foundation of Shanxi Province,China (No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China (No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China (No.2023-DXSSKF-Z02)。
文摘The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.
基金the National Natural Science Foundation of China(Nos.41972283,11972378)the National Key Scientific Instrument and Equipment Development,China(No.51927808)the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX2018B066).
文摘To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.
基金jointly supported by the National Key Research and Development Program of China[grant number 2016YFA0600601]the National Natural Science Foundation of China[grant numbers 42030601 and 41875087]。
文摘The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional wind at 925 h Pa.The first mode(EOF1)exhibits an in-phase relationship among different CEF channels over the AAM region,which has received much attention owing to its tight linkage with ENSO.By contrast,the second mode(EOF2)possesses an out-of-phase relationship between the Bay of Bengal(BOB)CEF(90°E)and Australian CEF,among which the New Guinea CEF near 150°E shows the most significant opposite correlation with the BOB CEF.Observational and numerical model results suggest that the equatorially asymmetric heat source(sink)over the western(eastern)Maritime Continent,closely associated with the in-situ sea surface temperature anomaly,can induce cross-equatorial northerly(southerly)flow into the heating hemisphere,which dominates the out-of-phase relationship between the BOB and New Guinea CEFs.Furthermore,an equatorially symmetric heating over the central Pacific may indirectly change the CEFs by modulating the zonal atmospheric circulation near the Maritime Continent.