The present status of energy consumption ofADU (Atmospheric Distillation Unit)/VDU (VacuumDistillation Unit) in China is discussed, the major problems, such as low end temperature of heat exchange,low heater efficienc...The present status of energy consumption ofADU (Atmospheric Distillation Unit)/VDU (VacuumDistillation Unit) in China is discussed, the major problems, such as low end temperature of heat exchange,low heater efficiency, high fuel consumption, and large consumption of water, electricity and steam areanalyzed, and measures for improvement are proposed.展开更多
The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of ...The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of the pressure on the radial thermal conductivity (K^r) and wall heat transfer coefficient (h~) for both pellets and monolith catalysts. The study included beds that were packed with pellets and monoliths, separately. The radial temperature distribution was measured at different beds heights and feed flow rates for both types of packing. Steady-state temperatures were measured using nine chromel-alumel thermocouples arranged on a stainless steel-cross. After temperatures were collected, the radial thermal conductivity and wall heat transfer coefficient were calculated using a two-dimensional pseudo-homogeneous model. The results showed that, the radial temperature profile at the entrance of the heating section was nearly even, and a constant temperature along the radius (0F/0r=0) taken as a boundary condition to solve the partial differential equation controlling the heat transfer. Temperature profiles obtained at elevated pressures were smoother at the center of the reactor and increased sharply near the wall, than profiles at atmospheric pressure. It could also be observed, that the radial temperature profiles in the center of the reactor using a monolith catalyst at elevated pressure were more even and smoother than those of pellets. Temperature profiles in fixed beds were found to be very sensitive to Ker and hw. In pressures between atmospheric and 10 bars, there was no change in the effective heat transport parameters (i.e. they are independent of pressure in this range). Both parameters were strongly affected by the pressure changes, above 10 bars. For the same Reynolds number (Ker) increased by 27% and 53% at 11 and 20 bars, respectively, in pellets catalyst. And they increased by factors of 2.3 and 4, when the pressure increased to the same pressures, in monolith catalyst. On the other hand, the effect of pressure on (hw) was completely the opposite, h,~ for pellets and monolith catalysts were found to be decreasing with increasing the pressure. Moreover, both coefficients increased with the Reynolds number at all applied pressures. This increase was higher for pellets than it for monoliths.展开更多
文摘The present status of energy consumption ofADU (Atmospheric Distillation Unit)/VDU (VacuumDistillation Unit) in China is discussed, the major problems, such as low end temperature of heat exchange,low heater efficiency, high fuel consumption, and large consumption of water, electricity and steam areanalyzed, and measures for improvement are proposed.
文摘The effect of operating pressure on the radial heat transfer coefficients, in a non-adiabatic fixed packed bed was studied at atmospheric and higher pressures, The study was concerned with investigating the effect of the pressure on the radial thermal conductivity (K^r) and wall heat transfer coefficient (h~) for both pellets and monolith catalysts. The study included beds that were packed with pellets and monoliths, separately. The radial temperature distribution was measured at different beds heights and feed flow rates for both types of packing. Steady-state temperatures were measured using nine chromel-alumel thermocouples arranged on a stainless steel-cross. After temperatures were collected, the radial thermal conductivity and wall heat transfer coefficient were calculated using a two-dimensional pseudo-homogeneous model. The results showed that, the radial temperature profile at the entrance of the heating section was nearly even, and a constant temperature along the radius (0F/0r=0) taken as a boundary condition to solve the partial differential equation controlling the heat transfer. Temperature profiles obtained at elevated pressures were smoother at the center of the reactor and increased sharply near the wall, than profiles at atmospheric pressure. It could also be observed, that the radial temperature profiles in the center of the reactor using a monolith catalyst at elevated pressure were more even and smoother than those of pellets. Temperature profiles in fixed beds were found to be very sensitive to Ker and hw. In pressures between atmospheric and 10 bars, there was no change in the effective heat transport parameters (i.e. they are independent of pressure in this range). Both parameters were strongly affected by the pressure changes, above 10 bars. For the same Reynolds number (Ker) increased by 27% and 53% at 11 and 20 bars, respectively, in pellets catalyst. And they increased by factors of 2.3 and 4, when the pressure increased to the same pressures, in monolith catalyst. On the other hand, the effect of pressure on (hw) was completely the opposite, h,~ for pellets and monolith catalysts were found to be decreasing with increasing the pressure. Moreover, both coefficients increased with the Reynolds number at all applied pressures. This increase was higher for pellets than it for monoliths.