The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy...The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.展开更多
The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid...The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.展开更多
Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective a...Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.展开更多
The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. Th...The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists ofα-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 ℃, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture.展开更多
The effects of heat treatment process on microstrucature, micro-yield strength and dynamic dimensional stability of ZL114A aluminum alloy were investigated by optical microscopy (OM), transmission electron microsco...The effects of heat treatment process on microstrucature, micro-yield strength and dynamic dimensional stability of ZL114A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile testing and thermal cycling on-line measuring method. Fine dispersed eutectic Si phases are observed, and long strip eutectic Si and massive primary Si phases decrease in ZL114A alloy after high-temperature and long-time solution treatment, which result in the increase of micro-plastic deformation resistance. With the increasing of aging temperature, aging precipitation behaviour of ZLll4A alloy transforms from precipitation of GP zone and fl' phases simultaneously at lower temperature to precipitation of stable Mg2Si phases at higher temperature. Because coherent strengthening is the main strengthen mechanism for micro-plastic deformation, precipitation of stable Mg2Si phases is unfavorable to the improvement of micro-plastic deformation resistance. Micro-yield strength cannot characterize dimensional stability comprehensively, and dynamic dimensional stability under alternative temperature should also be tested cooperatively for better evaluation of dimensional stability.展开更多
ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray...ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.展开更多
Because of the mixed grain and coarse grain structure, the long heat treatment cycle and large energy conservation in the heavy cylinder heat treatment process, the up ladder type and terraced type normalizing heat tr...Because of the mixed grain and coarse grain structure, the long heat treatment cycle and large energy conservation in the heavy cylinder heat treatment process, the up ladder type and terraced type normalizing heat treatment of heavy cylinder after rolling were put forward. The microstructure and mechanical properties of 2.25Cr1Mo0.25 V steel after the up ladder type normalizing, terraced type normalizing and isothermal type normalizing were studied. Experimental results show that: 1) For the grain refinement, the twice terraced type normalizing is better than the up ladder type and isothermal type normalizing, and the average grain size is 18 μm; 2) The yield strength, tensile strength and-30℃ charpy impact energy after twice terraced type normalizing are 681 MPa, 768 MPa and 181 J, respectively, and the mechanical properties are better than those of the up ladder type and isothermal type normalizing; 3) Compared with the isothermal type normalizing, the holding time of terraced type normalizing can be shortened by 30%, which greatly reduces the energy consumption.展开更多
The basic glass of Li2O-Al2O3-SiO2 system using P2O5 as nucleator was prepared by means of conventional melt quenching technology, and the heat-treatment process was determined by using differential thermal analysis. ...The basic glass of Li2O-Al2O3-SiO2 system using P2O5 as nucleator was prepared by means of conventional melt quenching technology, and the heat-treatment process was determined by using differential thermal analysis. The crystalline phases and the microstructure of the glass-ceramics were investigated by using X-ray diffraction and scanning electron microscopy. The results show that the glass based on Li2O-Al2O3-SiO2 oxides using P2O5 as nucleator can be prepared at lower melt temperature of 1 450 ℃ and the glass-ceramics with lower thermal expansion coefficient of 21.6×10-7 ℃-1 can also be obtained at 750 ℃. The glass-ceramics contain a few crystal phases in which the main crystal phase is β-quartz solid solution and the second crystal phase is β-spodumene solid solution. When the heat treatment temperature is not higher than 650 ℃, the transparent glass-ceramics containing β-quartz solid solution can be prepared. β-quartz solid solution changes into β-spodumene solid solution at about 750 ℃. And the appearance of the glass-ceramics changes from translucent, part opaque to complete opaque with increasing (temperature.)展开更多
In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good elect...In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.展开更多
The present study evaluated the effect of feed particle size, thermal processing, several levels of fat inclusion and moisture addition on pellet quality and protein solubility in potassium hydroxide (KOH) in a corn...The present study evaluated the effect of feed particle size, thermal processing, several levels of fat inclusion and moisture addition on pellet quality and protein solubility in potassium hydroxide (KOH) in a corn, soybean meal and animal by products based broiler diets. The different processing factors were combined in a 2 x 4 x 4 x 2 factorial arrangement in an eight randomized block consisting of eight production series: two particle sizes (coarse: 1,041 microns and medium: 743 microns), four fat inclusion levels at the mixer (15, 25, 35 and 45 g/kg of feed), four moisture addition levels in the conditioner (0, 7, 14 and 21 g/kg of feed) and two thermal processing treatments (conditioner-pellet press treatment or conditioner-expander-pellet treatment) which resulted in 64 different processed feeds. For the determination of the pellet durability index (PDI), the amount of intact pellets and protein solubility determinations, eight feed samples (replicates) were collected for each treatment. The data were transformed using a variation of Box-Cox transformation in order to fit a normal distribution (p 〉 0.05). Adding moisture up to 21 g/kg of feed in the conditioner improved pellet quality of the diets (p 〈 0.05). Expansion of diets before pelleting improved (P 〈 0.05) PDI and amount of intact pellets by 26% and 31%, respectively, as compared to a simple conditioning-pelleting feed processing. Expander treatment (at 110 ℃) decreased (p 〈 0.05) protein solubility in KOH from 686 g/kg to 643 g/kg total protein as compared to pelleting process (at 80-82 ℃). The amount of intact pellets reduced from 773 g/kg to 746 g/kg of feed (/7 〈 0.05) as particle size increased from medium to coarse grinding. Pellet quality was significantly reduced with fat inclusion levels higher than 35 g/kg of diet.展开更多
Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile ...Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile fibers and multi-variance fibers used in textile industry, the properties of above two kinds of differential polyester filaments after drawing in different heat conditions were studied. Finally following conclusions were obtained: Firstly, the tenacity and elongation at break decreases with the rise of Tp. Secondly, the tenacity rises but the elongation at break decreases with the increase of Tb. Then, when the Tb is low, both the shrinkage in boiling water and hi hot air decreases with the rise of Tp, while, when the Tb is high, both the shrinkage rises with the rise of Tp. The last, both the shrinkage decreases with the rise of Tb.展开更多
The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in th...The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied.Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages.Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward.With the rapid development of automotive industry,there will be certainly a new upsurge of research and application of air cushion furnace for heat treatment of aluminum alloy auto body sheet.展开更多
3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra...3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.展开更多
Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 a...Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 and Cr2O3) on the crystallization kinetics and heat treatment schedule of the slag were investigated. The results show that the nucleating agents changed the crystallization phase and morphology of the obtained glass-ceramics. The optimum heat treatment schedule of the glass with TiO2 was determined as nucleation at 952 K for 1.5 h and crystal growth at 1 258 K for 1.5 h, while those values with Cr203 were estimated at 971 K for 2 h and at 1 238 K for 2 h. TiO2 acting as nucleating agent could decrease the activation energy of the slag and shorten the total thermal treatment time in comparison with Cr2O3. The glass-ceramics obtained under the optimum heat treatment condition was environmentfriendly and had remarkable physical/mechanical properties and chemical durability.展开更多
The compaison of the properties of coke of three coking methods is introduced. The mechanical properties and high temperature reactivity of coke bleding preheating modified Dongshen coal are improved obviously than th...The compaison of the properties of coke of three coking methods is introduced. The mechanical properties and high temperature reactivity of coke bleding preheating modified Dongshen coal are improved obviously than those of normal coke, and achieve or exceed that of stamping coke. This method shows more ability of expending coking coal resources.展开更多
基金Project(2012CB619501)supported by the National Basic Research Program of China
文摘The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.
文摘The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.
文摘Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.
基金Projects(51171113,51301107)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,2013T60444)supported by the China Postdoctoral Science FoundationProjects(2011BAE22B02,2011DFA50907)supported by the Ministry of Science and Technology of China
文摘The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists ofα-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 ℃, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture.
文摘The effects of heat treatment process on microstrucature, micro-yield strength and dynamic dimensional stability of ZL114A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile testing and thermal cycling on-line measuring method. Fine dispersed eutectic Si phases are observed, and long strip eutectic Si and massive primary Si phases decrease in ZL114A alloy after high-temperature and long-time solution treatment, which result in the increase of micro-plastic deformation resistance. With the increasing of aging temperature, aging precipitation behaviour of ZLll4A alloy transforms from precipitation of GP zone and fl' phases simultaneously at lower temperature to precipitation of stable Mg2Si phases at higher temperature. Because coherent strengthening is the main strengthen mechanism for micro-plastic deformation, precipitation of stable Mg2Si phases is unfavorable to the improvement of micro-plastic deformation resistance. Micro-yield strength cannot characterize dimensional stability comprehensively, and dynamic dimensional stability under alternative temperature should also be tested cooperatively for better evaluation of dimensional stability.
基金Project(2003AA332040) supported by the National High Technology Research and Development Program of China
文摘ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.
基金Project(51305388)supported by the National Natural Science Foundation of ChinaProject(BJ2014055)supported by the Youth Talent Projects of Colleges in Hebei Province,ChinaProject(2016M590211)supported by China Postdoctoral Science Foundation
文摘Because of the mixed grain and coarse grain structure, the long heat treatment cycle and large energy conservation in the heavy cylinder heat treatment process, the up ladder type and terraced type normalizing heat treatment of heavy cylinder after rolling were put forward. The microstructure and mechanical properties of 2.25Cr1Mo0.25 V steel after the up ladder type normalizing, terraced type normalizing and isothermal type normalizing were studied. Experimental results show that: 1) For the grain refinement, the twice terraced type normalizing is better than the up ladder type and isothermal type normalizing, and the average grain size is 18 μm; 2) The yield strength, tensile strength and-30℃ charpy impact energy after twice terraced type normalizing are 681 MPa, 768 MPa and 181 J, respectively, and the mechanical properties are better than those of the up ladder type and isothermal type normalizing; 3) Compared with the isothermal type normalizing, the holding time of terraced type normalizing can be shortened by 30%, which greatly reduces the energy consumption.
文摘The basic glass of Li2O-Al2O3-SiO2 system using P2O5 as nucleator was prepared by means of conventional melt quenching technology, and the heat-treatment process was determined by using differential thermal analysis. The crystalline phases and the microstructure of the glass-ceramics were investigated by using X-ray diffraction and scanning electron microscopy. The results show that the glass based on Li2O-Al2O3-SiO2 oxides using P2O5 as nucleator can be prepared at lower melt temperature of 1 450 ℃ and the glass-ceramics with lower thermal expansion coefficient of 21.6×10-7 ℃-1 can also be obtained at 750 ℃. The glass-ceramics contain a few crystal phases in which the main crystal phase is β-quartz solid solution and the second crystal phase is β-spodumene solid solution. When the heat treatment temperature is not higher than 650 ℃, the transparent glass-ceramics containing β-quartz solid solution can be prepared. β-quartz solid solution changes into β-spodumene solid solution at about 750 ℃. And the appearance of the glass-ceramics changes from translucent, part opaque to complete opaque with increasing (temperature.)
基金supported by the National Natural Science Foundation of China(Nos.51871068,51771060,51971071,52011530025)Domain Foundation of Equipment Advance Research of 13th Five-year Plan,China(No.61409220118)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.3072020CFT1006)the Fundamental Research Funds for the Heilongjiang Universities,China(No.2020-KYYWF-0532)PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities,China(No.3072021GIP1002)Zhejiang Province Key Research and Development Plan,China(No.2021C01086)。
文摘In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.
文摘The present study evaluated the effect of feed particle size, thermal processing, several levels of fat inclusion and moisture addition on pellet quality and protein solubility in potassium hydroxide (KOH) in a corn, soybean meal and animal by products based broiler diets. The different processing factors were combined in a 2 x 4 x 4 x 2 factorial arrangement in an eight randomized block consisting of eight production series: two particle sizes (coarse: 1,041 microns and medium: 743 microns), four fat inclusion levels at the mixer (15, 25, 35 and 45 g/kg of feed), four moisture addition levels in the conditioner (0, 7, 14 and 21 g/kg of feed) and two thermal processing treatments (conditioner-pellet press treatment or conditioner-expander-pellet treatment) which resulted in 64 different processed feeds. For the determination of the pellet durability index (PDI), the amount of intact pellets and protein solubility determinations, eight feed samples (replicates) were collected for each treatment. The data were transformed using a variation of Box-Cox transformation in order to fit a normal distribution (p 〉 0.05). Adding moisture up to 21 g/kg of feed in the conditioner improved pellet quality of the diets (p 〈 0.05). Expansion of diets before pelleting improved (P 〈 0.05) PDI and amount of intact pellets by 26% and 31%, respectively, as compared to a simple conditioning-pelleting feed processing. Expander treatment (at 110 ℃) decreased (p 〈 0.05) protein solubility in KOH from 686 g/kg to 643 g/kg total protein as compared to pelleting process (at 80-82 ℃). The amount of intact pellets reduced from 773 g/kg to 746 g/kg of feed (/7 〈 0.05) as particle size increased from medium to coarse grinding. Pellet quality was significantly reduced with fat inclusion levels higher than 35 g/kg of diet.
文摘Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile fibers and multi-variance fibers used in textile industry, the properties of above two kinds of differential polyester filaments after drawing in different heat conditions were studied. Finally following conclusions were obtained: Firstly, the tenacity and elongation at break decreases with the rise of Tp. Secondly, the tenacity rises but the elongation at break decreases with the increase of Tb. Then, when the Tb is low, both the shrinkage in boiling water and hi hot air decreases with the rise of Tp, while, when the Tb is high, both the shrinkage rises with the rise of Tp. The last, both the shrinkage decreases with the rise of Tb.
文摘The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied.Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages.Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward.With the rapid development of automotive industry,there will be certainly a new upsurge of research and application of air cushion furnace for heat treatment of aluminum alloy auto body sheet.
文摘3D porous flower-like ZnO micro/nanostructure films grown on Ti substrates are synthesized via a very facile electrodeposition technique followed by heat treatment process. The ZnO architecture is assembled with ultra thin sheets, which consist of numbers of nanoparticles and pores, and the size of the nanoparticles can be controlled by adjusting the electrodepo- sition time or calcination temperature. It is worth noting that this synthetic method can provide an effective route for other porous metal oxide nanostructure films. Moreover, the photocatalytic performance shows the porous ZnO is an ideal photocatalyst.
基金Supported by the National Natural Science Foundation of China(No.51378332 and No.20806051)Science and Technology Project of Housing and Urban-Rural Ministry(No.2014-K4-014)Chinese Postdoctoral Science Foundation(No.2013M530872)
文摘Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 and Cr2O3) on the crystallization kinetics and heat treatment schedule of the slag were investigated. The results show that the nucleating agents changed the crystallization phase and morphology of the obtained glass-ceramics. The optimum heat treatment schedule of the glass with TiO2 was determined as nucleation at 952 K for 1.5 h and crystal growth at 1 258 K for 1.5 h, while those values with Cr203 were estimated at 971 K for 2 h and at 1 238 K for 2 h. TiO2 acting as nucleating agent could decrease the activation energy of the slag and shorten the total thermal treatment time in comparison with Cr2O3. The glass-ceramics obtained under the optimum heat treatment condition was environmentfriendly and had remarkable physical/mechanical properties and chemical durability.
文摘The compaison of the properties of coke of three coking methods is introduced. The mechanical properties and high temperature reactivity of coke bleding preheating modified Dongshen coal are improved obviously than those of normal coke, and achieve or exceed that of stamping coke. This method shows more ability of expending coking coal resources.