The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy...The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.展开更多
The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. Th...The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists ofα-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 ℃, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture.展开更多
To study the relationship between the microstructure and tensile properties of the novel metastable β titanium alloy Ti-5.5Cr-5Al-4Mo-3Nb-2Zr,a heat treatment process of ABFCA(solid solution in α+βregion with subse...To study the relationship between the microstructure and tensile properties of the novel metastable β titanium alloy Ti-5.5Cr-5Al-4Mo-3Nb-2Zr,a heat treatment process of ABFCA(solid solution in α+βregion with subsequent furnace cooling followed by aging treatment finally)was designed,by which α phases of different sizes can be precipitated in the β matrix.The results show that the microstructure obtained by this heat treatment process is composed of primary α(α_(p))phase,submicro rod-like α(α_(r))phase and secondary α(α_(s))phase.The alloy with multi-scale α phase has an excellent balance between strength and ductility.The elongation is about 18.3% at the ultimate tensile strength of 1125.4 MPa.The relationship between the strength of the alloy and the α phase was established.The strength of the alloy is proportional to the power of‒1/2 of the average spacing and width of α phase.The α_(s) phase with a smaller size and phase spacing can greatly improve the strength of the alloy by hindering dislocation slip.The transmission electron microscope analysis shows that there is a large amount of dislocation accumulation at the α/β interfaces,and many deformation twins are found in the α_(p) phase after tensile deformation.When the dislocation slip is hindered,twins occur at the stress concentration location,and twins can initiate some dislocations that are difficult to slip.Meanwhile,the plastic strain is distributed uniformly among the α_(p),α_(r),α_(s) phases and β matrix,thereby enhancing the ductility of the alloy.展开更多
基金Project(2012CB619501)supported by the National Basic Research Program of China
文摘The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.
基金Projects(51171113,51301107)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,2013T60444)supported by the China Postdoctoral Science FoundationProjects(2011BAE22B02,2011DFA50907)supported by the Ministry of Science and Technology of China
文摘The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists ofα-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 ℃, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture.
基金National Natural Science Foundation of China(52104379,U21A20117,52071219,52271249)。
文摘To study the relationship between the microstructure and tensile properties of the novel metastable β titanium alloy Ti-5.5Cr-5Al-4Mo-3Nb-2Zr,a heat treatment process of ABFCA(solid solution in α+βregion with subsequent furnace cooling followed by aging treatment finally)was designed,by which α phases of different sizes can be precipitated in the β matrix.The results show that the microstructure obtained by this heat treatment process is composed of primary α(α_(p))phase,submicro rod-like α(α_(r))phase and secondary α(α_(s))phase.The alloy with multi-scale α phase has an excellent balance between strength and ductility.The elongation is about 18.3% at the ultimate tensile strength of 1125.4 MPa.The relationship between the strength of the alloy and the α phase was established.The strength of the alloy is proportional to the power of‒1/2 of the average spacing and width of α phase.The α_(s) phase with a smaller size and phase spacing can greatly improve the strength of the alloy by hindering dislocation slip.The transmission electron microscope analysis shows that there is a large amount of dislocation accumulation at the α/β interfaces,and many deformation twins are found in the α_(p) phase after tensile deformation.When the dislocation slip is hindered,twins occur at the stress concentration location,and twins can initiate some dislocations that are difficult to slip.Meanwhile,the plastic strain is distributed uniformly among the α_(p),α_(r),α_(s) phases and β matrix,thereby enhancing the ductility of the alloy.