Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycl...Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycles, were applied to A356 brake calipers cast using a LK DCC630 HPDC machine.Vickers hardness measurements at a cross section of the brake calipers were performed, indicating that similar values can be obtained when using the significantly shorter heat treatment cycles.Finally, the typical tensile properties that can be obtained for SSM-HPDC A356 brake calipers are compared with those manufactured by gravity die casting.Results indicate that the differences in microstructures (globular or dendritic) do not have a noteworthy effect on the heat treatment response.This implies that the short heat treatment cycles originally developed for globular SSM-HPDC A356 castings can be successfully applied to dendritic liquid A356 castings too.展开更多
The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in below...The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements.展开更多
Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminat...Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminate cement as binders. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding, the specimens were heat treated at 1 000 ℃, 1 300℃ and 1 500℃ for 3 h, respectively. The bulk density ( BD), permanent linear change ( PLC), modulus of rupture(MOR) and clod crushing strength(CCS), thermal expansion coefficient and thermal shock resistance were examined. The results show that there is no obvious effect on adjusting permanent linear change and bulk density of castables by adding different particle sizes of cordierite at low temperature and intermediate temperature. Modulus of rupture of castable increase with the decreasing of the particle sizes of cordierite after heat treated by 1 000 ℃ and 1 300℃. In this experiment, thermal shock resistance of the castable with cordierite whose particle size is 0 - 1 mm is the best.展开更多
文摘Since the automotive industry has many possible applications for semi-solid metal (SSM)-high-pressure die casting (HPDC) parts, the newly developed heat treatment cycles, as well as the traditional heat treatment cycles, were applied to A356 brake calipers cast using a LK DCC630 HPDC machine.Vickers hardness measurements at a cross section of the brake calipers were performed, indicating that similar values can be obtained when using the significantly shorter heat treatment cycles.Finally, the typical tensile properties that can be obtained for SSM-HPDC A356 brake calipers are compared with those manufactured by gravity die casting.Results indicate that the differences in microstructures (globular or dendritic) do not have a noteworthy effect on the heat treatment response.This implies that the short heat treatment cycles originally developed for globular SSM-HPDC A356 castings can be successfully applied to dendritic liquid A356 castings too.
基金the financial assistance provided by Ministry of High Education and Scientific Research, the Government of Iraq
文摘The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements.
文摘Effect of different particle sizes of cordierite on properties of castable refractory by different heat treatment temperatures were investigated respectively with mullite and bauxite as raw materials, calcium aluminate cement as binders. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding, the specimens were heat treated at 1 000 ℃, 1 300℃ and 1 500℃ for 3 h, respectively. The bulk density ( BD), permanent linear change ( PLC), modulus of rupture(MOR) and clod crushing strength(CCS), thermal expansion coefficient and thermal shock resistance were examined. The results show that there is no obvious effect on adjusting permanent linear change and bulk density of castables by adding different particle sizes of cordierite at low temperature and intermediate temperature. Modulus of rupture of castable increase with the decreasing of the particle sizes of cordierite after heat treated by 1 000 ℃ and 1 300℃. In this experiment, thermal shock resistance of the castable with cordierite whose particle size is 0 - 1 mm is the best.