The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surfa...The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surface of AZ91D magnesium alloy. The microstructure of the layer was characterized by scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy(EDS).The phase constituent of these alloys was identified by X-ray diffractometry(XRD).The analysis results reveal that a zinc-based alloy layer with a thickness of 700μm can form on the surface of AZ91 alloy matrix.The layer is composed of Mg7Zn3,MgZn and a small amount of α-Mg solid solution.The results indicate that the corrosion-resistance of the specimen with a zinc-based alloy layer is much better than that of the specimen without the layer after being immersed in 5%NaCl solution for 240 h, and the layer is more protective for the AZ91 alloy.展开更多
This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of...This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of the pulsating airflow around the heating pillar mounted in the rectangular enclosure was investigated experimentally while changing the size of the clearance between the enclosure wall and the pillar. The pillar simulates the components mounted in thermal equipment such as fins and electrical components. The rectangular enclosure simulates an enclosure of electronic equipment and heat exchangers. The shape of the cross section of the pillar was square having sides 30 mm. The dimension of the width of the enclosure was changed from 50 mm to 80 mm. It was found that the heat transfer performance of the pulsating airflow became higher than that of the steady flow regardless of the dimension of the clearance. The heat transfer enhancement around heating components by the pulsating flow can be available regardless of the clearance around the components.展开更多
文摘The present work focuses on a new method combining cast-infiltration with thermal spraying technology to improve the surface corrosion resistance of magnesium alloy.A zinc-based alloy layer was fabricated on the surface of AZ91D magnesium alloy. The microstructure of the layer was characterized by scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy(EDS).The phase constituent of these alloys was identified by X-ray diffractometry(XRD).The analysis results reveal that a zinc-based alloy layer with a thickness of 700μm can form on the surface of AZ91 alloy matrix.The layer is composed of Mg7Zn3,MgZn and a small amount of α-Mg solid solution.The results indicate that the corrosion-resistance of the specimen with a zinc-based alloy layer is much better than that of the specimen without the layer after being immersed in 5%NaCl solution for 240 h, and the layer is more protective for the AZ91 alloy.
文摘This study focuses on a development of heat transfer enhancement techniques using pulsating flow for thermal equipment such as electronic equipment and heat exchangers. In this report, the heat transfer performance of the pulsating airflow around the heating pillar mounted in the rectangular enclosure was investigated experimentally while changing the size of the clearance between the enclosure wall and the pillar. The pillar simulates the components mounted in thermal equipment such as fins and electrical components. The rectangular enclosure simulates an enclosure of electronic equipment and heat exchangers. The shape of the cross section of the pillar was square having sides 30 mm. The dimension of the width of the enclosure was changed from 50 mm to 80 mm. It was found that the heat transfer performance of the pulsating airflow became higher than that of the steady flow regardless of the dimension of the clearance. The heat transfer enhancement around heating components by the pulsating flow can be available regardless of the clearance around the components.