Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on ho...Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on hot forging performances were investigated using a servo press with ram motion control. Three types of the die materials; (a) tool steel for hot working, (b) cemented tungsten carbide with high thermal conductivity and (c) TiCN composite with low thermal conductivity were compared. In hot upsetting of a chrome steel workpiece, the TiCN composite die was confirmed to reduce the forging load by approximately 20% at slow forging speed. This is because the die with low thermal conductivity could prevent the workpiece from rapid cooling induced by heat transfer at the die-workpiece interface. In addition, the material flow of the workpiece to a die cavity was improved. Furthermore, the wear depth/wear coefficient of the TiCN composite was lower than that of the tool steel and the cemented tungsten carbide in the numerical analysis of wear due to the combination of low thermal conductivity and high hardness.展开更多
The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deform...The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deformation is proposed in this paper. Three running phases of belt spindle have been analyzed and modeled: the start-up phase with leaping change due to the change in force and bending moment, the accelerating phase with axis deflection, and the constant speed phase with axis regression because of the combined effects of bending moment-torque-thermal deformation. The simulation and test were completed on the belt spindle of SKVM850 machine tool, which illustrates the variation law of the radial error of belt spindle during the whole running phases.展开更多
To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most diffe...To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.展开更多
Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final qu...Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.展开更多
文摘Titanium carbonitride based composite (TiCN-metallic binder) was developed as die material for replacement of cemented tungsten carbide. The effects of thermal conductivity characteristic of the TiCN composite on hot forging performances were investigated using a servo press with ram motion control. Three types of the die materials; (a) tool steel for hot working, (b) cemented tungsten carbide with high thermal conductivity and (c) TiCN composite with low thermal conductivity were compared. In hot upsetting of a chrome steel workpiece, the TiCN composite die was confirmed to reduce the forging load by approximately 20% at slow forging speed. This is because the die with low thermal conductivity could prevent the workpiece from rapid cooling induced by heat transfer at the die-workpiece interface. In addition, the material flow of the workpiece to a die cavity was improved. Furthermore, the wear depth/wear coefficient of the TiCN composite was lower than that of the tool steel and the cemented tungsten carbide in the numerical analysis of wear due to the combination of low thermal conductivity and high hardness.
基金Supported by the State S&T Projects for Upmarket NC Machine and Fundamental Manufacturing Equipments of China(No.2012ZX04012-031)
文摘The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deformation is proposed in this paper. Three running phases of belt spindle have been analyzed and modeled: the start-up phase with leaping change due to the change in force and bending moment, the accelerating phase with axis deflection, and the constant speed phase with axis regression because of the combined effects of bending moment-torque-thermal deformation. The simulation and test were completed on the belt spindle of SKVM850 machine tool, which illustrates the variation law of the radial error of belt spindle during the whole running phases.
文摘To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.
文摘Modelling and simulation has become an important tool in research and development. Simulation models are used to develop better understanding of the internal properties and impact of various parameters on the final quality of the product or process. Simulation model reduces the number of experiments and saves the wastage of material, time and money and are widely used in automobile industry, aircrafts manufacturing, process engineering, training for military, health care sector and many more. Wood Plastic Composite (WPC) is a bio-composite made by mixing wood fibers and plastic granules together at high temperature by compression molding or injection molding. A large quantity of WPC is rejected due to poor quality and low mechanical strength. There is a need to improve the understanding of the wood plastic composites, with both theoretical and experimental analysis. The impact of various parameters and processing conditions on the final product is not known to the industry people, due to less simulation models in this field. A new simulation software WPC Soft is developed to predict the mechanical and thermal properties of WPC. The software can predict the mechanical and thermal properties of WPC. The simulation results were validated with the experimental results and it was observed that the predicted values are quite close to the experimental values and with the further refining of the model, prediction can be further improved. The present simulation software can be easily used by the industry people and it requires very little knowledge of computers or modeling for its operation.