Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The resu...Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.展开更多
In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high temp...In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.展开更多
In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimet...In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 ℃ to 230 ℃. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines.展开更多
The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up ...The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ ha both N2 and CO2 atmospheres, while further mass loss occurred ha CO2 atmosphere at higher temper- atures due to char-CO2 gasification. Replacement of N2 ha the combustion environment by CO2 delayed the com- bustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.展开更多
基金Project(50378062)supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100)supported by the Natural Science Foundation of Tianjin Municipality,ChinaProject supported by Key Laboratory Program of the Ministry of Education,China
文摘Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.
基金Supported by Applied Basic Research Project of Sichuan Province (No.2006J13-014)Innovation Fund of Panzhihua University
文摘In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.
基金Supported by the National Natural Science Foundation of China (50974055, 50476033) the Doctor Foundation Project from the Henan Polytechnic University (B2011 - 101)
文摘In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 ℃ to 230 ℃. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines.
基金financially supported by the National Science Centre(Poland)under grant No.N N512 457940the Ministry of Science and Higher Education(Poland)under the statutory funds(BS-1-103-3020/2016)
文摘The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ ha both N2 and CO2 atmospheres, while further mass loss occurred ha CO2 atmosphere at higher temper- atures due to char-CO2 gasification. Replacement of N2 ha the combustion environment by CO2 delayed the com- bustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.