期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
聚丙烯基石墨烯改性复合材料的导电及热稳定性 被引量:1
1
作者 张新庄 张书勤 +4 位作者 闫鹏 裴婷 窦倩 董昭 王姗姗 《化学工业与工程》 CAS CSCD 2019年第6期60-64,共5页
以邻二氯苯(O-DCB)为溶剂,将超声预分散的石墨烯纳米微片(GNS)混入聚丙烯(PP)基材,再经塑化、热压成型获得GNS/PP复合材料。采用扫描电镜观察其微观形态变化,高阻计测量其电阻并计算出体积电阻率,同步热分析仪测试其在空气中的热稳定性... 以邻二氯苯(O-DCB)为溶剂,将超声预分散的石墨烯纳米微片(GNS)混入聚丙烯(PP)基材,再经塑化、热压成型获得GNS/PP复合材料。采用扫描电镜观察其微观形态变化,高阻计测量其电阻并计算出体积电阻率,同步热分析仪测试其在空气中的热稳定性能。结果表明,GNS在PP基材中分散均匀,并相互连接构成网络结构;GNS/PP复合材料的导电性能相较PP有了显著提升,当GNS质量含量为1%~2%时,复合材料出现明显的导电渗流现象,其体积电阻率降幅达6个数量级;当空气温度高于324℃时,在相同温度下,1%GNS/PP复合材料相较PP的失量更少,且整个失量阶段的温度跨度较PP提高40℃,但GNS的存在也导致GNS/PP复合材料的起始失量温度较PP提前30~40℃,并出现使材料完全失量的终点温度,且GNS质量含量越高,该终点温度越低。将低成本的GNS均匀掺入PP中能够获得导电性能优异并具备一定程度热稳定性的功能型复合材料。 展开更多
关键词 石墨烯 聚丙烯 复合材料 溶液共混法 体积电阻率 热失量分析
下载PDF
Experimental study on gas explosion suppression based on ferrocene 被引量:4
2
作者 Ming-Gao YU Kai ZHENG +1 位作者 Li-Gang ZHENG Xiao-Ping WEN 《Journal of Coal Science & Engineering(China)》 2013年第3期358-362,共5页
In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimet... In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 ℃ to 230 ℃. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines. 展开更多
关键词 FERROCENE gas explosion THERMOGRAVIMETRIC mass loss explosion suppression mechanism
下载PDF
Thermal Analysis and Kinetics of Coal during Oxy-Fuel Combustion 被引量:3
3
作者 Monika Kosowska-Golachowska 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第4期355-361,共7页
The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up ... The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied us/ng non- isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870℃ ha both N2 and CO2 atmospheres, while further mass loss occurred ha CO2 atmosphere at higher temper- atures due to char-CO2 gasification. Replacement of N2 ha the combustion environment by CO2 delayed the com- bustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased. 展开更多
关键词 oxy-fuel combustion PYROLYSIS bituminous coal TGA DTA kinetics analysis KAS method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部