Three-dimensional numerical model, which employed porosity factors to simulate the effects of obstacles in the fluid domain, was developed. Computer code-FASTOR-3D, based on SIMPLE algorithm and staggered grid scheme,...Three-dimensional numerical model, which employed porosity factors to simulate the effects of obstacles in the fluid domain, was developed. Computer code-FASTOR-3D, based on SIMPLE algorithm and staggered grid scheme, was initiated and verified with several benchmark solutions. Application of this code on heat transfer and flows in sodium pool of a fast breeder reactor, turned out meaningful database. The vast numerical result is visualized with affiliated software DV which converts flow and temperature fields into vivid colors for convenient analysis.展开更多
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimenta...The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimental results indicate that the iron content decreases with increasing Na2B4O7 addition and remelting time,and the iron content decreases from 0.400% to 0.184% under 9% Na2B4O7 addition for 30 min remelting.The elastic modulus,yield strength and ultimate tensile strength commercial aluminum are improved,and the tensile elongation is increased by 43% after electroslag refining.The chemical reaction between melt and slag to form Fe2B is the main reason for iron reduction and the thermodynamic calculation of the chemical reaction theoretically accounts for the formation of Fe2B.展开更多
文摘Three-dimensional numerical model, which employed porosity factors to simulate the effects of obstacles in the fluid domain, was developed. Computer code-FASTOR-3D, based on SIMPLE algorithm and staggered grid scheme, was initiated and verified with several benchmark solutions. Application of this code on heat transfer and flows in sodium pool of a fast breeder reactor, turned out meaningful database. The vast numerical result is visualized with affiliated software DV which converts flow and temperature fields into vivid colors for convenient analysis.
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.
基金Project (50825401) supported by the National Natural Science Foundation of ChinaProject (2012CB61905) supported by the National Basic Research Program of China
文摘The effect of electroslag refining on iron reduction from commercial aluminum was investigated.Cast electrodes of commercial aluminum were electroslag refined using KCl-NaCl-Na3AlF6 slag containing Na2B4O7.Experimental results indicate that the iron content decreases with increasing Na2B4O7 addition and remelting time,and the iron content decreases from 0.400% to 0.184% under 9% Na2B4O7 addition for 30 min remelting.The elastic modulus,yield strength and ultimate tensile strength commercial aluminum are improved,and the tensile elongation is increased by 43% after electroslag refining.The chemical reaction between melt and slag to form Fe2B is the main reason for iron reduction and the thermodynamic calculation of the chemical reaction theoretically accounts for the formation of Fe2B.