The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the e...The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the experiments and other theoretical results.The thermal conductivity and coefficient of thermal expansion of Mg2 Pb at high pressure were evaluated.The thermal conductivity presents a second-order polynomial with pressure.The calculated thermal conductivity of Mg2Pb indicates that it is suitable to be used as thermal conductor at 0 K.展开更多
We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivi...We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons. This improvement can reach 37.5% in the low temperature region. The pressure dependence of thermal conductivity is also investigated for different length, width and thickness of few-layer graphene. Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons, b-arthermore, it maybe indicate a so-called pressure-thermM effect in nanomaterials.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51201079)the Scientific Research Foundation for Introduced Talents of KMUST(Grant No.KKSY201251033)the Scientific Research Fund of Department of Education of Yunnan Province(Grant No.2012Z099)
文摘The thermodynamics properties and thermal conductivity of Mg2Pb at high pressures have been calculated by first-principles.The enthalpy of formation and heat capacity obtained at 0 GPa are in good agreement with the experiments and other theoretical results.The thermal conductivity and coefficient of thermal expansion of Mg2 Pb at high pressure were evaluated.The thermal conductivity presents a second-order polynomial with pressure.The calculated thermal conductivity of Mg2Pb indicates that it is suitable to be used as thermal conductor at 0 K.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.11004082 and 11175067the Natural Science Foundation of Guangdong Province under Grant Nos.10451063201005249 and S201101000332the Fundamental Research Funds for the Central Universities,JNU under Grant Nos.21611437 and 50421288
文摘We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons. This improvement can reach 37.5% in the low temperature region. The pressure dependence of thermal conductivity is also investigated for different length, width and thickness of few-layer graphene. Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons, b-arthermore, it maybe indicate a so-called pressure-thermM effect in nanomaterials.