期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PSO的RBF神经网络在热工系统辨识中的应用
被引量:
4
1
作者
王学厚
韩璞
+1 位作者
李岩
贾增周
《华北电力大学学报(自然科学版)》
CAS
北大核心
2008年第1期52-56,共5页
在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象...
在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象进行辨识仿真。通过对电厂一次风量数据和平均床温数据的仿真实验结果表明,在RBF神经网络对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳迟延时间,从而得到更精确的模型并提高辨识效率,可以取得良好的效果。
展开更多
关键词
粒子群优化算法
非线性权值递减策略
径向基神经网络
正交最小二乘算法
热工系统辨识
下载PDF
职称材料
基于PSO优化最小二乘支持向量机的热工系统辨识
被引量:
2
2
作者
宋宏耀
宋宏兵
崔秀政
《电力科学与工程》
2009年第10期43-46,共4页
在用最小二乘支持向量机(LS-SVM)辨识大迟延对象时,正则化参数、核宽度以及模型类中的迟延时间多是根据经验估测的,而不同的参数值对最小二乘支持向量机辨识的精度就会不同。针对上述问题,采用粒子群优化(PSO)算法对热工辨识系统中的相...
在用最小二乘支持向量机(LS-SVM)辨识大迟延对象时,正则化参数、核宽度以及模型类中的迟延时间多是根据经验估测的,而不同的参数值对最小二乘支持向量机辨识的精度就会不同。针对上述问题,采用粒子群优化(PSO)算法对热工辨识系统中的相关参数进行优化。对电厂一次风量数据和平均床温数据进行的仿真实验结果表明,在用LS-SVM对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳参数及迟延时间,能够有效地提高辨识精度。
展开更多
关键词
最小二乘支持向量机
粒子群优化算法
热工系统辨识
下载PDF
职称材料
采用微分进化算法和径向基函数神经网络的热工过程模型辨识
被引量:
13
3
作者
李岩
王东风
+1 位作者
焦嵩鸣
韩璞
《中国电机工程学报》
EI
CSCD
北大核心
2010年第8期110-116,共7页
在热工过程模型辨识中,被控对象动态特性往往表现出非线性、慢时变、大迟延和不确定性等特点,这使得难以对其建立比较精确的模型。为了达到精确建模的目的,提出一种基于微分进化算法和径向基函数神经网络的辨识方法。该方法采用基于能...
在热工过程模型辨识中,被控对象动态特性往往表现出非线性、慢时变、大迟延和不确定性等特点,这使得难以对其建立比较精确的模型。为了达到精确建模的目的,提出一种基于微分进化算法和径向基函数神经网络的辨识方法。该方法采用基于能量分布正交最小二乘学习算法的径向基函数(radial basis function,RBF)神经网络,通过改进的微分进化算法,对神经网络辨识系统进行参数优化,使RBF神经网络能够更快、更精确地逼近实际系统的输出,达到精确建模的目的。仿真结果表明,在采用改进的RBF网络对热工复杂对象进行辨识时,通过微分进化算法进一步确定其最佳参数,可以取得更好的辨识效果。
展开更多
关键词
热
工
过程:
系统
辨识
微分进化算法
径向基函数神经网络
能量分布正交最小二乘算法
下载PDF
职称材料
题名
基于PSO的RBF神经网络在热工系统辨识中的应用
被引量:
4
1
作者
王学厚
韩璞
李岩
贾增周
机构
华北电力大学控制科学与工程学院
出处
《华北电力大学学报(自然科学版)》
CAS
北大核心
2008年第1期52-56,共5页
文摘
在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象进行辨识仿真。通过对电厂一次风量数据和平均床温数据的仿真实验结果表明,在RBF神经网络对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳迟延时间,从而得到更精确的模型并提高辨识效率,可以取得良好的效果。
关键词
粒子群优化算法
非线性权值递减策略
径向基神经网络
正交最小二乘算法
热工系统辨识
Keywords
particle swarm optimization algorithm
nonlinear strategies of decreasing inertia weight
RBF neural network
orthogonal least squares algorithm
thermal system identification
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
基于PSO优化最小二乘支持向量机的热工系统辨识
被引量:
2
2
作者
宋宏耀
宋宏兵
崔秀政
机构
陕西渭河发电有限公司
国核电力规划设计研究院
出处
《电力科学与工程》
2009年第10期43-46,共4页
文摘
在用最小二乘支持向量机(LS-SVM)辨识大迟延对象时,正则化参数、核宽度以及模型类中的迟延时间多是根据经验估测的,而不同的参数值对最小二乘支持向量机辨识的精度就会不同。针对上述问题,采用粒子群优化(PSO)算法对热工辨识系统中的相关参数进行优化。对电厂一次风量数据和平均床温数据进行的仿真实验结果表明,在用LS-SVM对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳参数及迟延时间,能够有效地提高辨识精度。
关键词
最小二乘支持向量机
粒子群优化算法
热工系统辨识
Keywords
least squares support vector machine
particle swarm optimization algorithm
thermal system identification
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
采用微分进化算法和径向基函数神经网络的热工过程模型辨识
被引量:
13
3
作者
李岩
王东风
焦嵩鸣
韩璞
机构
华北电力大学控制科学与工程学院
出处
《中国电机工程学报》
EI
CSCD
北大核心
2010年第8期110-116,共7页
文摘
在热工过程模型辨识中,被控对象动态特性往往表现出非线性、慢时变、大迟延和不确定性等特点,这使得难以对其建立比较精确的模型。为了达到精确建模的目的,提出一种基于微分进化算法和径向基函数神经网络的辨识方法。该方法采用基于能量分布正交最小二乘学习算法的径向基函数(radial basis function,RBF)神经网络,通过改进的微分进化算法,对神经网络辨识系统进行参数优化,使RBF神经网络能够更快、更精确地逼近实际系统的输出,达到精确建模的目的。仿真结果表明,在采用改进的RBF网络对热工复杂对象进行辨识时,通过微分进化算法进一步确定其最佳参数,可以取得更好的辨识效果。
关键词
热
工
过程:
系统
辨识
微分进化算法
径向基函数神经网络
能量分布正交最小二乘算法
Keywords
thermal process
system identification
differential evolution algorithm
radial basis function neural network
energy distribution orthogonal least squares algorithm
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
TK229 [动力工程及工程热物理—动力机械及工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PSO的RBF神经网络在热工系统辨识中的应用
王学厚
韩璞
李岩
贾增周
《华北电力大学学报(自然科学版)》
CAS
北大核心
2008
4
下载PDF
职称材料
2
基于PSO优化最小二乘支持向量机的热工系统辨识
宋宏耀
宋宏兵
崔秀政
《电力科学与工程》
2009
2
下载PDF
职称材料
3
采用微分进化算法和径向基函数神经网络的热工过程模型辨识
李岩
王东风
焦嵩鸣
韩璞
《中国电机工程学报》
EI
CSCD
北大核心
2010
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部