期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于PSO的RBF神经网络在热工系统辨识中的应用 被引量:4
1
作者 王学厚 韩璞 +1 位作者 李岩 贾增周 《华北电力大学学报(自然科学版)》 CAS 北大核心 2008年第1期52-56,共5页
在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象... 在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象进行辨识仿真。通过对电厂一次风量数据和平均床温数据的仿真实验结果表明,在RBF神经网络对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳迟延时间,从而得到更精确的模型并提高辨识效率,可以取得良好的效果。 展开更多
关键词 粒子群优化算法 非线性权值递减策略 径向基神经网络 正交最小二乘算法 热工系统辨识
下载PDF
基于PSO优化最小二乘支持向量机的热工系统辨识 被引量:2
2
作者 宋宏耀 宋宏兵 崔秀政 《电力科学与工程》 2009年第10期43-46,共4页
在用最小二乘支持向量机(LS-SVM)辨识大迟延对象时,正则化参数、核宽度以及模型类中的迟延时间多是根据经验估测的,而不同的参数值对最小二乘支持向量机辨识的精度就会不同。针对上述问题,采用粒子群优化(PSO)算法对热工辨识系统中的相... 在用最小二乘支持向量机(LS-SVM)辨识大迟延对象时,正则化参数、核宽度以及模型类中的迟延时间多是根据经验估测的,而不同的参数值对最小二乘支持向量机辨识的精度就会不同。针对上述问题,采用粒子群优化(PSO)算法对热工辨识系统中的相关参数进行优化。对电厂一次风量数据和平均床温数据进行的仿真实验结果表明,在用LS-SVM对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳参数及迟延时间,能够有效地提高辨识精度。 展开更多
关键词 最小二乘支持向量机 粒子群优化算法 热工系统辨识
下载PDF
采用微分进化算法和径向基函数神经网络的热工过程模型辨识 被引量:13
3
作者 李岩 王东风 +1 位作者 焦嵩鸣 韩璞 《中国电机工程学报》 EI CSCD 北大核心 2010年第8期110-116,共7页
在热工过程模型辨识中,被控对象动态特性往往表现出非线性、慢时变、大迟延和不确定性等特点,这使得难以对其建立比较精确的模型。为了达到精确建模的目的,提出一种基于微分进化算法和径向基函数神经网络的辨识方法。该方法采用基于能... 在热工过程模型辨识中,被控对象动态特性往往表现出非线性、慢时变、大迟延和不确定性等特点,这使得难以对其建立比较精确的模型。为了达到精确建模的目的,提出一种基于微分进化算法和径向基函数神经网络的辨识方法。该方法采用基于能量分布正交最小二乘学习算法的径向基函数(radial basis function,RBF)神经网络,通过改进的微分进化算法,对神经网络辨识系统进行参数优化,使RBF神经网络能够更快、更精确地逼近实际系统的输出,达到精确建模的目的。仿真结果表明,在采用改进的RBF网络对热工复杂对象进行辨识时,通过微分进化算法进一步确定其最佳参数,可以取得更好的辨识效果。 展开更多
关键词 过程:系统辨识 微分进化算法 径向基函数神经网络 能量分布正交最小二乘算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部