期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
采用微分进化算法和径向基函数神经网络的热工过程模型辨识 被引量:13
1
作者 李岩 王东风 +1 位作者 焦嵩鸣 韩璞 《中国电机工程学报》 EI CSCD 北大核心 2010年第8期110-116,共7页
在热工过程模型辨识中,被控对象动态特性往往表现出非线性、慢时变、大迟延和不确定性等特点,这使得难以对其建立比较精确的模型。为了达到精确建模的目的,提出一种基于微分进化算法和径向基函数神经网络的辨识方法。该方法采用基于能... 在热工过程模型辨识中,被控对象动态特性往往表现出非线性、慢时变、大迟延和不确定性等特点,这使得难以对其建立比较精确的模型。为了达到精确建模的目的,提出一种基于微分进化算法和径向基函数神经网络的辨识方法。该方法采用基于能量分布正交最小二乘学习算法的径向基函数(radial basis function,RBF)神经网络,通过改进的微分进化算法,对神经网络辨识系统进行参数优化,使RBF神经网络能够更快、更精确地逼近实际系统的输出,达到精确建模的目的。仿真结果表明,在采用改进的RBF网络对热工复杂对象进行辨识时,通过微分进化算法进一步确定其最佳参数,可以取得更好的辨识效果。 展开更多
关键词 过程:系统辨识 微分进化算法 径向基函数神经网络 能量分布正交最小二乘算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部