The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection sim...The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.展开更多
Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model.In this model,solar penetration generates basinwide cooling and wa...Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model.In this model,solar penetration generates basinwide cooling and warming in summer and winter,respectively.Associated with SST changes,annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic,which leads to acceleration of both subtropical and subpolar gyres.Owing to warming in the subtropics and significant saltiness in the subpolar region,potential density decreases(increases) in the subtropical(subpolar)North Atlantic.The north-south meridional density gradient is thereby enlarged,accelerating the Atlantic meridional overturning circulation(AMOC).In addition,solar penetration reduces stratification in the upper ocean and favors stronger vertical convection,which also contributes to acceleration of the AMOC.展开更多
Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary la...Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.展开更多
基金jointly supported by the National Natural Science Foundation of China under Grants 40905045 and 40821092the Open Project for LASG-IAP-CAS+2 种基金the Study Project of Jiangsu Provincial 333 High-level Talents Cultivation Programmethe Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education under Grant KLME05001the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.
基金Supported by the Key Project of National Natural Science Foundation of China(No.41130859)the Innovation Team Project(No.40921004)
文摘Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model.In this model,solar penetration generates basinwide cooling and warming in summer and winter,respectively.Associated with SST changes,annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic,which leads to acceleration of both subtropical and subpolar gyres.Owing to warming in the subtropics and significant saltiness in the subpolar region,potential density decreases(increases) in the subtropical(subpolar)North Atlantic.The north-south meridional density gradient is thereby enlarged,accelerating the Atlantic meridional overturning circulation(AMOC).In addition,solar penetration reduces stratification in the upper ocean and favors stronger vertical convection,which also contributes to acceleration of the AMOC.
基金supported by the CAS Strategic Priority Research Program (Grant No. XDA05110304)the National Basic Research Program of China (Grant No. 2015CB954102)the National Natural Science Foundation of China (Grant Nos. 41205079 & 41305040)
文摘Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.