期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的全球热带气旋生成预测模型及其可解释性分析
1
作者 穆斌 王馨 +4 位作者 袁时金 陈宇轩 王冠淞 秦博 周冠博 《中国科学:地球科学》 2024年第12期3708-3733,共26页
热带云团可能发展为热带气旋并造成重大的人员伤亡和经济损失,准确预测热带气旋生成对于早期预警至关重要.面向深度学习方法应用于热带气旋生成预测时仅使用单一时刻的预测因子、未考虑海气相互作用、模型可解释性低的问题,本文构建了基... 热带云团可能发展为热带气旋并造成重大的人员伤亡和经济损失,准确预测热带气旋生成对于早期预警至关重要.面向深度学习方法应用于热带气旋生成预测时仅使用单一时刻的预测因子、未考虑海气相互作用、模型可解释性低的问题,本文构建了基于Swin Transformer的热带气旋生成预测模型(Tropical Cyclogenesis Prediction-Net,TCGP-Net),其采用卷积操作和注意力机制编码时空特征,捕捉预测因子的时空演化信息.该模型考虑了包括海表温度在内的多变量的海气耦合作用.此外,本文利用因果推断和积分梯度法,验证了该模型预测因子的有效性并对模型的决策过程进行了可解释性分析.该模型使用GridSat遥感数据和ERA5再分析资料进行训练,实验结果表明该模型具有较高的准确性和稳定性,提前24小时预测热带气旋是否生成的检测率为97.9%,虚警率为2.2%,远好于现有模型.这说明其可作为预测热带气旋是否生成的可靠工具. 展开更多
关键词 热带气旋生成预测 深度学习 特征融合 可解释性 因果推断
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部