Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable ...Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .展开更多
Ocean surface winds observed by the Quick Scatterometer(QuikSCAT) satellite prior to the geneses of 36 tropical cy-clones(TCs) in the South China Sea(SCS) are investigated in this paper. The results show that there ar...Ocean surface winds observed by the Quick Scatterometer(QuikSCAT) satellite prior to the geneses of 36 tropical cy-clones(TCs) in the South China Sea(SCS) are investigated in this paper. The results show that there are areas with negative mean horizontal divergence around the TC genesis locations three days prior to TC formation. The divergence term [-(f+ζ)(u/x+v/y) ] in the vorticity equation is calculated based upon the QuikSCAT ocean surface wind data. The calculated mean divergence term is about 10.3 times the mean relative vorticity increase rate around the TC genesis position one day prior to TC genesis,which shows the important contributions of the divergence term to the vorticity increase prior to TC formation. It is suggested that criteria related with the divergence and divergence term be applied in early detections of tropical cyclogenesis using the QuikSCAT satellite data.展开更多
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection sim...The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.展开更多
The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found b...The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found by singular value decomposition (SVD) analysis that the region in the tropical Pacific with high positive correlation between the vertically integrated heat source <Q1> anomaly and the SST anomaly, and between the vertically integrated moisture sink <Q2> anomaly and the SST anomaly, is mainly located in a long and narrow belt to the east of 170 °E between 5 °S and 5 °N. The analysis of the vertical structure of atmospheric heat sources and moisture sinks shows that the interannual variations of Q1, Q2 and SST in the equatorial central and eastern Pacific are strongly and positively correlated in the whole troposphere except the bottom (962.5 hPa) and the top (85 hPa) layers. However, in the western Pacific, the interannual variations of Q1 below 850 hPa is negatively related to the SST. The correlation coefficient at the level 962.5 hPa reaches even –0.59. In other layers the positive correlation between the interannual variations of Q1, Q2 and the SST are weak in the western Pacific.展开更多
Using the SST data series in tropical ocean (20N ~ 20S, 50E ~ 80W) during 1951 ~ 1997 to calculate its monthly mean square deviation, the work obtains results showing that interannual SST variability of the Pacific is...Using the SST data series in tropical ocean (20N ~ 20S, 50E ~ 80W) during 1951 ~ 1997 to calculate its monthly mean square deviation, the work obtains results showing that interannual SST variability of the Pacific is more significant than that of the Indian Ocean, especially near the central and eastern equatorial Pacific (165W~90W, 6N~6S), where it ranges from 2C to 4C. The interannual SST variability is obvious in November and December but small in March and April. The interannual variability of 搘arm pool?SST is not so obvious as that of the eastern equatorial Pacific. However, interannual SST variability of the Indian Ocean ranges from 1C to 2C or so, being smaller than that of the Pacific. In the Indian Ocean, interannual SST variability of the Southern Hemisphere is more obvious than that of the Northern Hemisphere. According to above characteristics of interannual SST variability, the key sectors are determined.展开更多
By using monthly historical sea surface temperature (SST) data for the yearsfrom 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied inthis paper. The analysis of WPWP centroid (WP...By using monthly historical sea surface temperature (SST) data for the yearsfrom 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied inthis paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Nino-3 region SSTanomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Nino-3 regionSSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological positionof the WPWPC corresponds to about a 1℃ anomaly in the Nino-3 region area-mean SST. This studyconnects the WPWPC zonal displacement with the Nino-3 SSTA, and it may be helpful in betterunderstanding the fact that the WPWP eastward extension is conducive to the Nino-3 region SSTincrease during an El Nino-Southern Oscillation (ENSO) event.展开更多
The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the ...The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.展开更多
Excavating sands and gravel on land in combination with constructing reservoirs for storing fresh water is an ideal approach in atolls. Appropriate mining of gravel from the prograding gravel beach is acceptable. Digg...Excavating sands and gravel on land in combination with constructing reservoirs for storing fresh water is an ideal approach in atolls. Appropriate mining of gravel from the prograding gravel beach is acceptable. Digging reef rock close to the edge of the wide ocean reef flat without surface loose sediments on it or sand beach can be accepted. Excavating sand from some depths in lagoon is a scientific approach particularly important for urbanized atolls. However, selecting appropriate sites for mining sand other than at some depths in lagoon is suitable to rural islands without dense populations. These sites include up drift side of long groin on the reef flat, partly filled access channel-port, outlet of artificial channel and lagoon margin on the prograding coast.展开更多
This study is focused first on the rainfall variability in C6te d'Ivoire and in Ghana; second, on the determination of the climatic zones of these areas. Monthly rainfall heights recorded in 43 weather stations from ...This study is focused first on the rainfall variability in C6te d'Ivoire and in Ghana; second, on the determination of the climatic zones of these areas. Monthly rainfall heights recorded in 43 weather stations from 1964 to 2000 is carried out. This study suggests a sudivision in three climatic zones which are: the littoral zone that borders the tropical Atlantic, the center zone that is located in the central region of both countries, and the northern zone whose seasonal cycle is close to that of the Sahel of West Africa. The study of the interannual variability of the rainfall shows some patterns which are differently influenced by sea surface temperature. Such work could be useful for agricultural activities and to better quantify the role of the vegetation dynamics.展开更多
This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic...This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic analysis and Empirical Orthogonal Function (EOF) methods.Significant cooling trends in the SOT in the tropical western Pacific were found over this 60-year period.The first EOF of the SOT in tropical Pacific displays an ENSO-like zonal dipole pattern on decadal time scale,and we considered this pattern in subsurface ocean temperature the tropical Pacific decadal oscillation (TPDO).Our analysis suggests that TPDO is closely correlated with the Pacific decadal oscillation (PDO) in the surface sea temperature (SST).The correlation coefficient between the indices of TPDO and PDO is +0.81 and reaches a maximum of +0.84 when TPDO lags behind PDO by 2 months.Therefore,a change of TPDO is likely related to the variation of PDO.The long-term change in TPDO best explains decadal warming in the tropical eastern Pacific SST and implies potential impact on the weakening of East Asian summer monsoons after the late 1970s.展开更多
The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the ...The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE.These findings provide useful insights to adjust for the area effect and highlight the need to use equal- area bands along the elevational gradient.展开更多
In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature...In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea (SCS). The heat and momentum fluxes from eddy covariance measurement (EC) are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu. The results show that at the developing and weakening stages of Koppu, both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative, and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones (TCs) Molave and Chanthu. However, the differences are positive on the left fi'ont portion of Molave and Chanthu. These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere, thus intensifying and maintaining the two TCs. The negative differences indicate that the ocean removes heat fluxes from the atmosphere, thus weakening the TCs. The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s, but when the wind speed is greater than 25 m/s, the significant wave height increases slightly with the wind speed. By comparing the observed sensible heat, latent heat, and friction velocity from EC with these variables from COARE 3.0 algorithm, a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed, and the observed friction velocity is found to be almost the same as the calculated friction velocity.展开更多
The sea surface temperature (SST) in the In- dian Ocean affects the regional climate over the Asian continent mostly through a modulation of the monsoon system. It is still difficult to provide an a priori indicatio...The sea surface temperature (SST) in the In- dian Ocean affects the regional climate over the Asian continent mostly through a modulation of the monsoon system. It is still difficult to provide an a priori indication of the seasonal variability over the Indian Ocean. It is widely recognized that the warm and cold events of SST over the tropical Indian Ocean are strongly linked to those of the equatorial eastern Pacific. In this study, a statistical prediction model has been developed to predict the monthly SST over the tropical Indian Ocean. This model is a linear regression model based on the lag relationship between the SST over the tropical Indian Ocean and the Nino3.4 (5°S-5°N, 170°W-120°W) SST Index. The pre- dictor (i.e., Nino3.4 SST Index) has been operationally predicted by a large size ensemble E1 Nifio and the Southern Oscillation (ENSO) forecast system with cou- pled data assimilation (Leefs_CDA), which achieves a high predictive skill of up to a 24-month lead time for the equatorial eastern Pacific SST. As a result, the prediction skill of the present statistical model over the tropical In- dian Ocean is better than that of persistence prediction for January 1982 through December 2009.展开更多
Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that ...Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.展开更多
The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated usi...The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, thc effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.展开更多
A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was report...A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was reported in this paper, showing clear and strong western boundary currents, equato- rial currents, and subtropical gyres in the North and South Pacific regions in velocity field, with a more systematic structure in the North Pacific.展开更多
The Singular Spectrum Analysis (SSA) method is used to conduct studies of periodicity of the SST and meridional winds in tropical Pacific Ocean. The results show that the air-sea system for the Pacific varies on quasi...The Singular Spectrum Analysis (SSA) method is used to conduct studies of periodicity of the SST and meridional winds in tropical Pacific Ocean. The results show that the air-sea system for the Pacific varies on quasi-4-year, quasi-2-year and interannual scales, with the quasi-4-year scale having the highest variability. Depending on the scale, the wind field has a varying degree of association with the SST anomalies. Difference is also found in the evolution of phase. In addition, the work discusses the difference in SSTA resulted from wind fields for quasi-4-year and quasi-2-year components.展开更多
In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper ...In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Nifia phase and weakening in the E1 Nifio phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.展开更多
基金Supported by the National Natural Science Foundation of China (No.40890151)the National Basic Research Program of China (973 Program)(No.2012CB417401)
文摘Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .
文摘Ocean surface winds observed by the Quick Scatterometer(QuikSCAT) satellite prior to the geneses of 36 tropical cy-clones(TCs) in the South China Sea(SCS) are investigated in this paper. The results show that there are areas with negative mean horizontal divergence around the TC genesis locations three days prior to TC formation. The divergence term [-(f+ζ)(u/x+v/y) ] in the vorticity equation is calculated based upon the QuikSCAT ocean surface wind data. The calculated mean divergence term is about 10.3 times the mean relative vorticity increase rate around the TC genesis position one day prior to TC genesis,which shows the important contributions of the divergence term to the vorticity increase prior to TC formation. It is suggested that criteria related with the divergence and divergence term be applied in early detections of tropical cyclogenesis using the QuikSCAT satellite data.
基金jointly supported by the National Natural Science Foundation of China under Grants 40905045 and 40821092the Open Project for LASG-IAP-CAS+2 种基金the Study Project of Jiangsu Provincial 333 High-level Talents Cultivation Programmethe Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education under Grant KLME05001the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.
基金National Natural Science Foundation of China (40275026) Part One of National Key Fundamental Research and Development Planning Project (G1998040900)
文摘The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found by singular value decomposition (SVD) analysis that the region in the tropical Pacific with high positive correlation between the vertically integrated heat source <Q1> anomaly and the SST anomaly, and between the vertically integrated moisture sink <Q2> anomaly and the SST anomaly, is mainly located in a long and narrow belt to the east of 170 °E between 5 °S and 5 °N. The analysis of the vertical structure of atmospheric heat sources and moisture sinks shows that the interannual variations of Q1, Q2 and SST in the equatorial central and eastern Pacific are strongly and positively correlated in the whole troposphere except the bottom (962.5 hPa) and the top (85 hPa) layers. However, in the western Pacific, the interannual variations of Q1 below 850 hPa is negatively related to the SST. The correlation coefficient at the level 962.5 hPa reaches even –0.59. In other layers the positive correlation between the interannual variations of Q1, Q2 and the SST are weak in the western Pacific.
基金Mechanisms of Important Climatic Disasters in China and the Research on Prediction Theory a key national development and planning project for fundamental scientific study Effects of SST Variation in tropical Pacific and Indian Ocean on the Wetness in R
文摘Using the SST data series in tropical ocean (20N ~ 20S, 50E ~ 80W) during 1951 ~ 1997 to calculate its monthly mean square deviation, the work obtains results showing that interannual SST variability of the Pacific is more significant than that of the Indian Ocean, especially near the central and eastern equatorial Pacific (165W~90W, 6N~6S), where it ranges from 2C to 4C. The interannual SST variability is obvious in November and December but small in March and April. The interannual variability of 搘arm pool?SST is not so obvious as that of the eastern equatorial Pacific. However, interannual SST variability of the Indian Ocean ranges from 1C to 2C or so, being smaller than that of the Pacific. In the Indian Ocean, interannual SST variability of the Southern Hemisphere is more obvious than that of the Northern Hemisphere. According to above characteristics of interannual SST variability, the key sectors are determined.
文摘By using monthly historical sea surface temperature (SST) data for the yearsfrom 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied inthis paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Nino-3 region SSTanomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Nino-3 regionSSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological positionof the WPWPC corresponds to about a 1℃ anomaly in the Nino-3 region area-mean SST. This studyconnects the WPWPC zonal displacement with the Nino-3 SSTA, and it may be helpful in betterunderstanding the fact that the WPWP eastward extension is conducive to the Nino-3 region SSTincrease during an El Nino-Southern Oscillation (ENSO) event.
基金This study is supported by the Doctoral Startup Foundation of 0cean University of China (2003)partly supported by the National Science Foundation of China (40506035)The altimeter products were produced by the CLS Space 0ceanography Division as part of the Environment and Climate EU ENACT project (EVK2-CT2001-00117) and with support from CNES.
文摘The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.
文摘Excavating sands and gravel on land in combination with constructing reservoirs for storing fresh water is an ideal approach in atolls. Appropriate mining of gravel from the prograding gravel beach is acceptable. Digging reef rock close to the edge of the wide ocean reef flat without surface loose sediments on it or sand beach can be accepted. Excavating sand from some depths in lagoon is a scientific approach particularly important for urbanized atolls. However, selecting appropriate sites for mining sand other than at some depths in lagoon is suitable to rural islands without dense populations. These sites include up drift side of long groin on the reef flat, partly filled access channel-port, outlet of artificial channel and lagoon margin on the prograding coast.
文摘This study is focused first on the rainfall variability in C6te d'Ivoire and in Ghana; second, on the determination of the climatic zones of these areas. Monthly rainfall heights recorded in 43 weather stations from 1964 to 2000 is carried out. This study suggests a sudivision in three climatic zones which are: the littoral zone that borders the tropical Atlantic, the center zone that is located in the central region of both countries, and the northern zone whose seasonal cycle is close to that of the Sahel of West Africa. The study of the interannual variability of the rainfall shows some patterns which are differently influenced by sea surface temperature. Such work could be useful for agricultural activities and to better quantify the role of the vegetation dynamics.
基金The National Natural Science Foundation ofChina (Grant Nos. 90711003 and 40921003)Chinese Coordinated Observation and Prediction of climate System (ChineseCOPES) program (Grant No. GYHY200706005) jointly supportedthis study
文摘This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic analysis and Empirical Orthogonal Function (EOF) methods.Significant cooling trends in the SOT in the tropical western Pacific were found over this 60-year period.The first EOF of the SOT in tropical Pacific displays an ENSO-like zonal dipole pattern on decadal time scale,and we considered this pattern in subsurface ocean temperature the tropical Pacific decadal oscillation (TPDO).Our analysis suggests that TPDO is closely correlated with the Pacific decadal oscillation (PDO) in the surface sea temperature (SST).The correlation coefficient between the indices of TPDO and PDO is +0.81 and reaches a maximum of +0.84 when TPDO lags behind PDO by 2 months.Therefore,a change of TPDO is likely related to the variation of PDO.The long-term change in TPDO best explains decadal warming in the tropical eastern Pacific SST and implies potential impact on the weakening of East Asian summer monsoons after the late 1970s.
基金the support provided by the National Special Water Programs (Grant Nos. 2009ZX07210-009, 2015ZX07203-011, 2015ZX07204-007)the Department of Environmental Protection of Shandong Province (SDHBPJ-ZB-08)+2 种基金the ChinaScholarship Council (Grant No. 201306730020)the Chinese Natural Science Foundation (Grant No. 39560023)Queen Mary University of London
文摘The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE.These findings provide useful insights to adjust for the area effect and highlight the need to use equal- area bands along the elevational gradient.
基金Key Project of Natural Science Foundation of China(40730948)National Basic Research Program of China(2009CB421501)National Natural Science Foundation of China(41075051)
文摘In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea (SCS). The heat and momentum fluxes from eddy covariance measurement (EC) are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu. The results show that at the developing and weakening stages of Koppu, both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative, and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones (TCs) Molave and Chanthu. However, the differences are positive on the left fi'ont portion of Molave and Chanthu. These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere, thus intensifying and maintaining the two TCs. The negative differences indicate that the ocean removes heat fluxes from the atmosphere, thus weakening the TCs. The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s, but when the wind speed is greater than 25 m/s, the significant wave height increases slightly with the wind speed. By comparing the observed sensible heat, latent heat, and friction velocity from EC with these variables from COARE 3.0 algorithm, a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed, and the observed friction velocity is found to be almost the same as the calculated friction velocity.
基金supported by the National Basic Research Program of China (Grant No. 2012CB417404)the National Natural Science Foundation of China (Grant Nos.41075064 and 41176014)
文摘The sea surface temperature (SST) in the In- dian Ocean affects the regional climate over the Asian continent mostly through a modulation of the monsoon system. It is still difficult to provide an a priori indication of the seasonal variability over the Indian Ocean. It is widely recognized that the warm and cold events of SST over the tropical Indian Ocean are strongly linked to those of the equatorial eastern Pacific. In this study, a statistical prediction model has been developed to predict the monthly SST over the tropical Indian Ocean. This model is a linear regression model based on the lag relationship between the SST over the tropical Indian Ocean and the Nino3.4 (5°S-5°N, 170°W-120°W) SST Index. The pre- dictor (i.e., Nino3.4 SST Index) has been operationally predicted by a large size ensemble E1 Nifio and the Southern Oscillation (ENSO) forecast system with cou- pled data assimilation (Leefs_CDA), which achieves a high predictive skill of up to a 24-month lead time for the equatorial eastern Pacific SST. As a result, the prediction skill of the present statistical model over the tropical In- dian Ocean is better than that of persistence prediction for January 1982 through December 2009.
基金Supported by the National Basic Research Program of China (973 Program)(No.2011CB403500)the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, XDA05090404)+1 种基金the National Basic Research Program of China (973 Program) (No. 2010CB950302)the Qianren and Changjiang Scholar Projects, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)and SOEST-8711 & IPRC-901
文摘Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.
基金Supported by the National Natural Science Foundation of China(No. 40706008)the Open Research Program of the Chinese Academy Sciences Key Laboratory of Tropical Marine Environmental Dynamics (No. LED0606)+1 种基金the Shandong Province Natural Science Foundation (No. Z2008E02)the National High Technology Research and Development Program of China (863 Program) (No.2008AA09A402)
文摘The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, thc effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.
基金Supported by the NSFC (Key Program, No. 90411013)
文摘A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was reported in this paper, showing clear and strong western boundary currents, equato- rial currents, and subtropical gyres in the North and South Pacific regions in velocity field, with a more systematic structure in the North Pacific.
基金Experimental Study on South China Sea Monsoon Scaling Project A of national ministry of science and technology
文摘The Singular Spectrum Analysis (SSA) method is used to conduct studies of periodicity of the SST and meridional winds in tropical Pacific Ocean. The results show that the air-sea system for the Pacific varies on quasi-4-year, quasi-2-year and interannual scales, with the quasi-4-year scale having the highest variability. Depending on the scale, the wind field has a varying degree of association with the SST anomalies. Difference is also found in the evolution of phase. In addition, the work discusses the difference in SSTA resulted from wind fields for quasi-4-year and quasi-2-year components.
基金Supported by the National Basic Research Program of China (973Program) (No. 2012CB417400)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Nifia phase and weakening in the E1 Nifio phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.